A modified response spectrum analysis procedure to determine nonlinear seismic demands of high-rise buildings with shear walls

2017 ◽  
Vol 27 (1) ◽  
pp. e1409 ◽  
Author(s):  
Fawad Ahmed Najam ◽  
Pennung Warnitchai
2021 ◽  
Vol 889 (1) ◽  
pp. 012045
Author(s):  
Mir Rahman Naseri ◽  
Balwinder Singh

Abstract A hybrid structure is one that combines more than two different types of materials to compensate for weak places while also maximizing strength. Hybrid steel and concrete frameworks, as well as other modern materials, are unified at the member or framework unit. Hybrid structures are frequent in high-rise and super-high-rise building projects, and they provide the benefit of cost savings. Shear walls are built to withstand lateral loadings like earthquakes and winds loads. The response spectrum analysis approach is frequently used to measure design stresses for earthquake-prone structures. The modelling and analysis of the regular plan structures are done by CSI ETABS 2019 in IV seismic zones, on type II (medium soil) of India According to IS 1893 (Part-1) 2016. The aims of this study Response spectrum analysis of 41 storey RCC and hybrid structures with shear walls and without shear walls are compared. RCC and hybrid structures with shear walls showed lower storey displacement, storey drift, and story shear values than RCC and hybrid structures without shear walls, according to the results of this study. The research results will be helpful as a reference and a tool for seismic analysis of hybrid structures.


2012 ◽  
Vol 594-597 ◽  
pp. 860-868
Author(s):  
Kai Hu ◽  
Ge Qu

The most common analysis methods of complex high-rise buildings are the response spectrum analysis, elastic time history analysis, pushover analysis and etc. Meanwhile, for the analysis of those high-rises whose height is higher than 200 meters, period is longer than 4 seconds, the dynamic nonlinear analysis would be more accurate. In this paper, the dynamic nonlinear analysis was executed in use of the Perform-3D program. The results show that the maximum top displacement can meet the national codes; most tie beams and the frame beams of the upper structure yielded in the IO~IS stage and parts reached the CP stage; both the laminated columns and the frame columns had a good performance on the shear behavior; and it is also proposed to strengthen the reinforcement at the reducted storeys. By all these above, it can be judged that the structure reached the codes’ seismic performance objectives.


Author(s):  
Varun Mahajan

Abstract: Architects nowadays develop attractive edifices, and floating columns are widely employed in this process. Floating columns are used not only to provide a magnificent perspective but also when a vast open area is necessary. Edifices with irregular configurations are more vulnerable to earthquakes and hence, suitable shear wall placement is required to ensure the edifice's stability. Many multi-storey edifices collapsed in seconds after the Bhuj Earthquake (Jan 26, 2001), due to the presence of soft stories, floating columns, and mass anomalies. As a result, knowing the seismic reactions of these buildings are vital for constructing earthquake-resistant assemblies. The relevance of a Floating Column and the existence of a shear wall in an irregular multistorey building is highlighted in this study. Dynamic seismic behaviour of a G+18 irregular edifice with different locations of the floating column and different positions of the shear wall is explored in this research. The edifice is analysed and compared with the model without shear walls and floating columns to examine the alterations. The dynamic analysis is carried out using Response Spectrum Analysis and storey drift, storey displacement and base shear are calculated and finally, software compression is computed for different zones. The analysis is carried out by Indian standardized codes IS 1893:2016 and IS 456:2000 which are the codes specified by the Bureau of Indian Standards for earthquake resistance edifice design and plain and reinforcement concrete design respectively. Keywords: Floating Column, Shear Wall, Irregular Edifice, Seismic behaviour, Response Spectrum Analysis, storey drift, storey displacement, base shear.


2014 ◽  
Vol 18 (4) ◽  
pp. 73-95 ◽  
Author(s):  
Ky Leng ◽  
Chatpan Chintanapakdee ◽  
Toshiro Hayashikawa

Author(s):  
Md. Shahid Iqbal

Abstract: Structural design and analysis produces the capability of resisting all the applied loads without failure during its intended life. Lateral loads mainly due to earthquake govern the design of high-rise buildings. The interior structural system or exterior structural system provides the resistance to lateral loads in the structure. The present paper describes the analysis and design of high-rise buildings with Steel Plate Shear Wall (SPSW) for (G+20) stories. The properties of Steel plate shear wall system include the stiffness for control of structural displacement, ductile failure mechanism and high-energy absorption. The design and analysis of the composite building with steel plate shear wall is carried out using software ETABS. The present study is to carry out the response spectrum analysis of a high-rise composite building by optimizing the thickness of steel plate shear wall and to compare the results of displacement, story drift, overturning moment and story shear. The models are analyzed by Response Spectrum analysis as per IS 1893:2002. All structural members are designed as per IS 456:2002 & IS 800:2007 considering all load combinations. Keywords: Seismic; Composite; Shear Wall; Earthquake; Reinforced concrete.


2013 ◽  
Vol 2013 ◽  
pp. 1-28 ◽  
Author(s):  
Dipendu Bhunia ◽  
Vipul Prakash ◽  
Ashok D. Pandey

Earthquake causes considerable damage to a large number of RCC high-rise buildings and tremendous loss of life. Therefore, designers and structural engineers should ensure to offer adequate earthquake resistant provisions with regard to planning, design, and detailing in high-rise buildings to withstand the effect of an earthquake and minimize disaster. As an earthquake resistant system, the use of coupled shear walls is one of the potential options in comparison with moment resistant frame (MRF) and shear wall frame combination systems in RCC high-rise buildings. Furthermore, it is reasonably well established that it is uneconomical to design a structure considering its linear behavior during earthquake. Hence, an alternative design philosophy needs to be evolved in the Indian context to consider the postyield behavior wherein the damage state is evaluated through deformation considerations. In the present context, therefore, performance-based seismic design (PBSD) has been considered to offer significantly improved solutions as compared to the conventional design based on linear response spectrum analysis.


2021 ◽  
Vol 889 (1) ◽  
pp. 012055
Author(s):  
Krishna Prasad Chaudhary ◽  
Ankit Mahajan

Abstract In this research work several high rise buildings were analyzed using CSI ETABS under the influence of the response spectrum analysis over it. Several different shaped high rise buildings such as H shaped, O shaped and C shaped buildings were taken into consideration for carrying out the research work. All three shaped buildings were of different storey that is of 12 storey and of 16 storey. For proper seismic analysis of all the above discussed buildings, response spectrum method of seismic analysis were taken into consideration. The results of all the buildings for response spectrum analysis were quite different from one another and it was found that the H-shaped building showed better results as compared to the other shaped buildings. It was also seen that the 12 storey building results were quite impressive as compared to the results of the 16 storey building. With the transference of heavy mass, very little effect was seen in latera sway i.e. variation in maximum displacement was negligible. Again, for 16 storey building, maximum displacement was found in the case L-Shaped 16 storey building with the value of 87.804 mm. Again, the transference of heavy masses had a minimal effect on total quantity and cost of the 16 Storey building. In the gist, it was concluded that, bending moments and shear forces were increased from 1.17% to 1.84%. Maximum variation in B.M and S.F. can be seen in O-shaped Building. L-shaped Building produces maximum displacement from all the three irregular shapes i.e. H-shape, L-shaped and O-shaped.


Sign in / Sign up

Export Citation Format

Share Document