scholarly journals Dynamic Behaviour Comparison of an Irregular Edifice with Different Locations of Floating Column and Shear Wall

Author(s):  
Varun Mahajan

Abstract: Architects nowadays develop attractive edifices, and floating columns are widely employed in this process. Floating columns are used not only to provide a magnificent perspective but also when a vast open area is necessary. Edifices with irregular configurations are more vulnerable to earthquakes and hence, suitable shear wall placement is required to ensure the edifice's stability. Many multi-storey edifices collapsed in seconds after the Bhuj Earthquake (Jan 26, 2001), due to the presence of soft stories, floating columns, and mass anomalies. As a result, knowing the seismic reactions of these buildings are vital for constructing earthquake-resistant assemblies. The relevance of a Floating Column and the existence of a shear wall in an irregular multistorey building is highlighted in this study. Dynamic seismic behaviour of a G+18 irregular edifice with different locations of the floating column and different positions of the shear wall is explored in this research. The edifice is analysed and compared with the model without shear walls and floating columns to examine the alterations. The dynamic analysis is carried out using Response Spectrum Analysis and storey drift, storey displacement and base shear are calculated and finally, software compression is computed for different zones. The analysis is carried out by Indian standardized codes IS 1893:2016 and IS 456:2000 which are the codes specified by the Bureau of Indian Standards for earthquake resistance edifice design and plain and reinforcement concrete design respectively. Keywords: Floating Column, Shear Wall, Irregular Edifice, Seismic behaviour, Response Spectrum Analysis, storey drift, storey displacement, base shear.

Author(s):  
Akshay Gajbhiye

Abstract : In modern multistorey building construction, irregularities like the soft storey, vertical and plan irregularities, floating columns etc are very common. Building with an open ground storey for parking is a common feature that results in floating columns. Floating columns provide column free space and a good aesthetic architectural view of the building. floating column means the end of any vertical element that rests on the beam which leads to discontinuity of columns such that the path of load distribution in multi-storey buildings is disturbed. The use of a floating column also tends to increase the moment in the column, storey shear etc which highly undesirable in seismically active areas. So, the study of the best location where the floating column needs to be provided to reduce the impact due to seismic loads is of primordial importance. Shear wall is a vertical member which is provided from foundation to top storey. In this study shear wall is used in the direction of orientation so that it provides additional strength and stiffness to the buildings. In the present analysis, 8 models are studied. The first model considers a multi-storeyed building without any shear wall and floating column. Other models analysed are with shear wall and by varying the location of floating columns. The analysis and design are done by STAAD.pro V8i SS6 version software and the method used is response spectrum analysis in earthquake zone 4. The effect of floating column location on parameters such as Base shear, Displacement, Maximum moment, storey shear and percentage of steel reinforcement are discussed. The comparison of results of different models is also carried out in detail using graphs and bar charts in this study. The suitable location for providing a floating column with the shear wall is also discussed. Keywords: Floating column, Shear wall, Seismic load, STAAD.pro.v8i, Response Spectrum Analysis.


2019 ◽  
Vol 8 (4) ◽  
pp. 3821-3826

Staircase and elevator are the main structural components in multi-story buildings to enable access to different floor levels. In many Multi-storey buildings staircase and elevator core wall are located at different positions as per the benefits of structure plan and user. The position of the staircase and elevator core wall plays a vital role and changing the position of the stair case and core wall leads torsional irregularity in the plan regular building. The torsion in a building occurs because of eccentricity in the mass and stiffness distributions. The staircase and core wall is an integral part of the building, and its position may change the dynamic characteristic of regular plan building. In this paper, an attempt is made to understand the seismic behaviour of RC buildings with the effect of staircase and elevator core wall with changing position. Six models of 5 storey RC buildings with different positions of staircase and elevator core wall, i.e. ideal frame, Centre, Corner, Edge-Opposite, Edge-Adjacent and Corner with cantilever or balcony are considered. The modelling and analysis is done using ETABS v17. The response spectrum analysis and Modal analysis is performed, and Results of storey displacements, storey drift, storey shear, storey stiffness, base shear and torsion irregularity are discussed. From the results, it can be observed that building model with an edge-opposite position of staircase and elevator core wall performs better than other building model and torsion for it came within the code suggested ratio of 1.2.


2012 ◽  
Vol 152-154 ◽  
pp. 34-39
Author(s):  
Qing Sheng Guo ◽  
Qing Shan Yang

Considering the structure type of the steel staggered-truss (SST) system, the effect of infilled walls will be major and need to be studied amply, some scientific design regulations need to be found for referrence. Based on two different 3D models considering or ignoring the stiffness of infilled walls (SIW), a numerical investigation is presented on the structural behaviors of the SST system utilizing the finite element 3D simulation analysis soft ware ETABS. The longitudinal structure is asymmetrical due to the SIW, it causes the torsion forces in the building. Comparing to the different results of response spectrum analysis, including storey drift and equivalent base shear under frequent earth quake and rare earth quake, some conclusions were made, including the capacity of the SST system under seismic load and the effect of the SIW for SST system. The increased base shear force factors due to the effect of the SIW were suggested for SST structure design, it is different from the other steel structure types.


2019 ◽  
Vol 14 (2) ◽  
Author(s):  
Masnawari Rahmadani ◽  
Ririt Aprillin ◽  
Eka Murtinugraha

The building model was made by using ETABS’s software version 9.7.1. Method that was used for earthquake analysis was response spectrum analysis. Result of this research showed that application of two columns dilatation produced different structure behavior when it applied on lengthways direction (X) and breadthways direction (Y) of existing building. Dilatation variation that was given on lengthways direction (X) of building produced better behaviors. More regular building form because of dilatation on lengthways direction (X) produced shorter period with bigger base shear. Along with the base shear that accepted by building, the column momen also became bigger. Based on displacement that was produced, application of dilatation on lengthways direction was influenced by re-entrant corner. Configuration of more regular building that has close re-entrant corner to existing building condition produced displacement that close to the existing, that thing was also in line with story drift that was produced. The displacement that was produced by all dilatation variation was still in safe category according to SNI 03-1726-2012. The biggest displacement that happened on X and Y direction was produced by variation 1 as big as 0.824m and 0.817m in a row.


Earthquake is an unexpected and expensive disaster for both livelihood and economy. In the modern day construction, there has been a lot of importance to make the structure resistant against lateral loads for multi storied building. Shear walls are an option of lateral load resisting system. The Concept of designing shear wall is to provide building structure with sufficient strength and deformation capacity to sustain the demands imposed by lateral loads with adequate margin of safety. The study focuses on effect of shear wall on R.C. building at different heights. For this purpose five models of different heights 15m, 30m, 45m, 60m and 75m and with different aspect ratios of 1.33, 0.66, 0.44, 0.33 and 0.26 respectively have been considered. All the models were designed for seismic zone V. For analysis purpose response spectrum method of analysis is considered as per IS: 1893-2002. The comparative study has been done for base shear, storey displacement, storey drift and storey stiffness. Utilization of shear walls when placed at corners of the building of low aspect ratio in high rise buildings is more effective compared to the low rise buildings of higher aspect ratio, as it gives the larger base shear and lesser displacement. The storey stiffness and storey drift is greatly improved when shear wall is placed at corners of the building


2019 ◽  
Vol 180 ◽  
pp. 295-309 ◽  
Author(s):  
Kimleng Khy ◽  
Chatpan Chintanapakdee ◽  
Pennung Warnitchai ◽  
Anil C. Wijeyewickrema

Author(s):  
R. M. Phuke

The present study describes the analysis and design of high-rise steel building frame with and without Steel plate shear wall (SPSW). Further it is compared with moment resisting steel framed building and X-Braced steel framed building. For present work Response Spectrum Analysis is carried out for steel moment resisting frame building having G+19 storey situated in zone III. Modeling is done by using strip modeling. The analysis of steel plate shear wall and the building are carried out using software SAP2000 V15. The main parameter considered in this project is to compare the seismic performance of buildings i.e. lateral deflection. The models are analyzed by Response Spectrum analysis as per IS 1893:2002 and design has been carried out by using IS 800-2007.


Author(s):  
Sarwan Gupta ◽  
Shubham Gaikar ◽  
Kewal Patil ◽  
Swapnil Shelar ◽  
Harshad Thakare

Nowadays, the number of buildings is constructed and designed according to the requirements and aesthetic viewpoints of the buildings every day. Most buildings are constructed in a certain spatial configuration, such as X-shaped, V-shaped, and the x and y coordinates are not parallel to the structure. The earthquake caused more damage to the different structures of the building. The main problem is the slenderness ratio. The main purpose of this project is to compare the dynamic characteristics of buildings with different structural configurations in seismic zones and soil types. In this study, a 12-story space configuration structure was considered, and the height of 3m on each floor did not exceed 36m, with shear walls and supports at different positions of the building. The dynamic behaviour of buildings in all seismic zones of magnitude III and on different types of soil (such as media) is studied. The structure has peripheral beams that carry RC shear walls with a thickness of 230 mm. The response spectrum analysis was carried out by using software of ETABS version


2021 ◽  
Vol 933 (1) ◽  
pp. 012008
Author(s):  
A H Prathama ◽  
M Teguh ◽  
F Saleh

Abstract The growing growth of human activities has led to changes in housing patterns in urban areas. The land crisis in urban areas has made land prices uneconomical, so buildings are designed vertically. One solution to resist earthquakes in multi-story buildings is to add a shear wall structure with the proper profile and layout. Shear wall designs with variations influence the base shear, drift ratio, lateral deflection, and story drift patterns. This study presents the structural response comparison of buildings against variations in the profile and layout of shear walls subjected to earthquake loads. Force Based Design method utilizing the response spectrum approach was adopted in the analysis and carried out using SAP200. Six structural models comprise a frame without shear walls, three L-profile shear walls, two I-profile (straight) shear walls. The simulation results of the overall structural models show that the profile and layout configuration of shear walls in the frame structure of a multi-story building correlates directly to the performance of base shear, drift ratio, and story drift with relatively comparative conditions.


Author(s):  
Sarwan Gupta ◽  
Shubham Gaikar ◽  
Kewal Patil ◽  
Swapnil Shelar ◽  
Harshad Thakare

Nowadays, the number of buildings is constructed and designed according to the requirements and aesthetic viewpoints of the buildings every day. Most buildings are constructed in a certain spatial configuration, such as X-shaped, V-shaped, and the x and y coordinates are not parallel to the structure. The earthquake caused more damage to the different structures of the building. The main problem is the slenderness ratio. The main purpose of this project is to compare the dynamic characteristics of buildings with different structural configurations in seismic zones and soil types. In this study, a 12-story space configuration structure was considered, and the height of 3m on each floor did not exceed 36m, with shear walls and supports at different positions of the building. The dynamic behaviour of buildings in all seismic zones of magnitude III and on different types of soil (such as media) is studied. The structure has peripheral beams that carry RC shear walls with a thickness of 230 mm. The response spectrum analysis was carried out by using software of ETABS version.


Sign in / Sign up

Export Citation Format

Share Document