Effects of heat stimulation andl-ascorbic acid 2-phosphate supplementation on myogenic differentiation of artificial skeletal muscle tissue constructs

2015 ◽  
Vol 11 (5) ◽  
pp. 1322-1331 ◽  
Author(s):  
Kazushi Ikeda ◽  
Akira Ito ◽  
Masanori Sato ◽  
Shota Kanno ◽  
Yoshinori Kawabe ◽  
...  
Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1411
Author(s):  
Minghao Nie ◽  
Ai Shima ◽  
Kenta Fukushima ◽  
Yuya Morimoto ◽  
Shoji Takeuchi

Muscle tissues can be fabricated in vitro by culturing myoblast-populated hydrogels. To counter the shrinkage of the myoblast-populated hydrogels during culture, a pair of anchors are generally utilized to fix the two ends of the hydrogel. Here, we propose an alternative method to counter the shrinkage of the hydrogel and fabricate plane-shaped skeletal muscle tissues. The method forms myoblast-populated hydrogel in a cylindrical cavity with a central pillar, which can prevent tissue shrinkage along the circumferential direction. By eliminating the usages of the anchor pairs, our proposed method can produce plane-shaped skeletal muscle tissues with uniform width and thickness. In experiments, we demonstrate the fabrication of plane-shaped (length: ca. 10 mm, width: 5~15 mm) skeletal muscle tissue with submillimeter thickness. The tissues have uniform shapes and are populated with differentiated muscle cells stained positive for myogenic differentiation markers (i.e., myosin heavy chains). In addition, we show the assembly of subcentimeter-order tissue blocks by stacking the plane-shaped skeletal muscle tissues. The proposed method can be further optimized and scaled up to produce cultured animal products such as cultured meat.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 679 ◽  
Author(s):  
Seyedmahmoud ◽  
Çelebi-Saltik ◽  
Barros ◽  
Nasiri ◽  
Banton ◽  
...  

Skeletal muscle tissue engineering aims to fabricate tissue constructs to replace or restore diseased or injured skeletal muscle tissues in the body. Several biomaterials and microscale technologies have been used in muscle tissue engineering. However, it is still challenging to mimic the function and structure of the native muscle tissues. Three-dimensional (3D) bioprinting is a powerful tool to mimic the hierarchical structure of native tissues. Here, 3D bioprinting was used to fabricate tissue constructs using gelatin methacryloyl (GelMA)-alginate bioinks. Mechanical and rheological properties of GelMA-alginate hydrogels were characterized. C2C12 myoblasts at the density 8 × 106 cells/mL were used as the cell model. The effects of alginate concentration (0, 6, and 8% (w/v)) and crosslinking mechanism (UV crosslinking or ionic crosslinking with UV crosslinking) on printability, cell viability, proliferation, and differentiation of bioinks were studied. The results showed that 10% (w/v) GelMA-8% (w/v) alginate crosslinked using UV light and 0.1 M CaCl2 provided the optimum niche to induce muscle tissue formation compared to other hydrogel compositions. Furthermore, metabolic activity of cells in GelMA bioinks was improved by addition of oxygen-generating particles to the bioinks. It is hoped that such bioprinted muscle tissues may find wide applications in drug screening and tissue regeneration.


2019 ◽  
Vol 11 (3) ◽  
pp. 035030 ◽  
Author(s):  
Shida Miao ◽  
Margaret Nowicki ◽  
Haitao Cui ◽  
Se-Jun Lee ◽  
Xuan Zhou ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2483 ◽  
Author(s):  
Daniele Boso ◽  
Edoardo Maghin ◽  
Eugenia Carraro ◽  
Mattia Giagante ◽  
Piero Pavan ◽  
...  

Recently, skeletal muscle represents a complex and challenging tissue to be generated in vitro for tissue engineering purposes. Several attempts have been pursued to develop hydrogels with different formulations resembling in vitro the characteristics of skeletal muscle tissue in vivo. This review article describes how different types of cell-laden hydrogels recapitulate the multiple interactions occurring between extracellular matrix (ECM) and muscle cells. A special attention is focused on the biochemical cues that affect myocytes morphology, adhesion, proliferation, and phenotype maintenance, underlining the importance of topographical cues exerted on the hydrogels to guide cellular orientation and facilitate myogenic differentiation and maturation. Moreover, we highlight the crucial role of 3D printing and bioreactors as useful platforms to finely control spatial deposition of cells into ECM based hydrogels and provide the skeletal muscle native-like tissue microenvironment, respectively.


Author(s):  
Devin Neal ◽  
Mahmut Selman Sakar ◽  
H. Harry Asada

Tissue engineered skeletal muscle constructs have and will continue to be valuable in treating, and testing various muscle injuries and diseases. However a significant drawback to numerous methods of producing 3D skeletal muscle constructs grown in vitro is that muscle cell density as a fraction of total volume or mass, is often significantly lower than muscle found in vivo. Therefore a method to increase muscle cell density within a construct is needed.


Author(s):  
Selva Bilge ◽  
Emre Ergene ◽  
Ebru Talak ◽  
Seyda Gokyer ◽  
Yusuf Osman Donar ◽  
...  

AbstractSkeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document