The effect of mechanical stress on the proliferation, adipogenic differentiation and gene expression of human adipose-derived stem cells

2017 ◽  
Vol 12 (1) ◽  
pp. 276-284 ◽  
Author(s):  
Nora E. Paul ◽  
Bernd Denecke ◽  
Bong-Sung Kim ◽  
Alice Dreser ◽  
Jürgen Bernhagen ◽  
...  
Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 430 ◽  
Author(s):  
Sara Al-Ghadban ◽  
Zaidmara T. Diaz ◽  
Hallie J. Singer ◽  
Karya B. Mert ◽  
Bruce A. Bunnell

Lipedema is a painful loose connective tissue disorder characterized by a bilaterally symmetrical fat deposition in the lower extremities. The goal of this study was to characterize the adipose-derived stem cells (ASCs) of healthy and lipedema patients by the expression of stemness markers and the adipogenic and osteogenic differentiation potential. Forty patients, 20 healthy and 20 with lipedema, participated in this study. The stromal vascular fraction (SVF) was obtained from subcutaneous thigh (SVF-T) and abdomen (SVF-A) fat and plated for ASCs characterization. The data show a similar expression of mesenchymal markers, a significant increase in colonies (p < 0.05) and no change in the proliferation rate in ASCs isolated from the SVF-T or SVF-A of lipedema patients compared with healthy patients. The leptin gene expression was significantly increased in lipedema adipocytes differentiated from ASCs-T (p = 0.04) and the PPAR-γ expression was significantly increased in lipedema adipocytes differentiated from ASCs-A (p = 0.03) compared to the corresponding cells from healthy patients. No significant changes in the expression of genes associated with inflammation were detected in lipedema ASCs or differentiated adipocytes. These results suggest that lipedema ASCs isolated from SVF-T and SVF-A have a higher adipogenic differentiation potential compared to healthy ASCs.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Gayathri Subramanian ◽  
Alexander Stasuk ◽  
Mostafa Elsaadany ◽  
Eda Yildirim-Ayan

Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment.


2016 ◽  
Vol 84 ◽  
pp. 1601-1609 ◽  
Author(s):  
Chien-Chih Chen ◽  
Li-Wen Hsu ◽  
Toshiaki Nakano ◽  
Kuang-Tzu Huang ◽  
Kuang-Den Chen ◽  
...  

2014 ◽  
Vol 11 (4) ◽  
pp. 391-403 ◽  
Author(s):  
Nareshwaran Gnanasegaran ◽  
Vijayendran Govindasamy ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51264 ◽  
Author(s):  
Sarah Strauß ◽  
Sonja Dudziak ◽  
Ronny Hagemann ◽  
Stephan Barcikowski ◽  
Malte Fliess ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 4095 ◽  
Author(s):  
Emanuela Chiarella ◽  
Annamaria Aloisio ◽  
Stefania Scicchitano ◽  
Valeria Lucchino ◽  
Ylenia Montalcini ◽  
...  

Human adipose-derived stem cells (hADSCs) are multipotent mesenchymal cells that can differentiate into adipocytes, chondrocytes, and osteocytes. During osteoblastogenesis, the osteoprogenitor cells differentiate into mature osteoblasts and synthesize bone matrix components. Zinc finger protein 521 (ZNF521/Zfp521) is a transcription co-factor implicated in the regulation of hematopoietic, neural, and mesenchymal stem cells, where it has been shown to inhibit adipogenic differentiation. The present study is aimed at determining the effects of ZNF521 on the osteoblastic differentiation of hADSCs to clarify whether it can influence their osteogenic commitment. The enforced expression or silencing of ZNF521 in hADSCs was achieved by lentiviral vector transduction. Cells were cultured in a commercial osteogenic medium for up to 20 days. The ZNF521 enforced expression significantly reduced osteoblast development as assessed by the morphological and molecular criteria, resulting in reduced levels of collagen I, alkaline phosphatase, osterix, osteopontin, and calcium deposits. Conversely, ZNF521 silencing, in response to osteoblastic stimuli, induced a significant increase in early molecular markers of osteogenesis and, at later stages, a remarkable enhancement of matrix mineralization. Together with our previous findings, these results show that ZNF521 inhibits both adipocytic and osteoblastic maturation in hADSCs and suggest that its expression may contribute to maintaining the immature properties of hADSCs.


Sign in / Sign up

Export Citation Format

Share Document