scholarly journals Effect of Uniaxial Tensile Cyclic Loading Regimes on Matrix Organization and Tenogenic Differentiation of Adipose-Derived Stem Cells Encapsulated within 3D Collagen Scaffolds

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Gayathri Subramanian ◽  
Alexander Stasuk ◽  
Mostafa Elsaadany ◽  
Eda Yildirim-Ayan

Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10890
Author(s):  
Ban Al- kurdi ◽  
Nidaa A. Ababneh ◽  
Nizar Abuharfeil ◽  
Saddam Al Demour ◽  
Abdalla S. Awidi

Background Congenital abnormalities, cancers as well as injuries can cause irreversible damage to the urinary tract, which eventually requires tissue reconstruction. Smooth muscle cells, endothelial cells, and urothelial cells are the major cell types required for the reconstruction of lower urinary tract. Adult stem cells represent an accessible source of unlimited repertoire of untransformed cells. Aim Fetal bovine serum (FBS) is the most vital supplement in the culture media used for cellular proliferation and differentiation. However, due to the increasing interest in manufacturing xeno-free stem cell-based cellular products, optimizing the composition of the culture media and the serum-type used is of paramount importance. In this study, the effects of FBS and pooled human platelet (pHPL) lysate were assessed on the capacity of human adipose-derived stem cells (ADSCs) to differentiate into urothelial-like cells. Also, we aimed to compare the ability of both conditioned media (CM) and unconditioned urothelial cell media (UCM) to induce urothelial differentiation of ADCS in vitro. Methods ADSCs were isolated from human lipoaspirates and characterized by flow cytometry for their ability to express the most common mesenchymal stem cell (MSCs) markers. The differentiation potential was also assessed by differentiating them into osteogenic and adipogenic cell lineages. To evaluate the capacity of ADSCs to differentiate towards the urothelial-like lineage, cells were cultured with either CM or UCM, supplemented with either 5% pHPL, 2.5% pHPL or 10% FBS. After 14 days of induction, cells were utilized for gene expression and immunofluorescence analysis. Results ADSCs cultured in CM and supplemented with FBS exhibited the highest upregulation levels of the urothelial cell markers; cytokeratin-18 (CK-18), cytokeratin-19 (CK-19), and Uroplakin-2 (UPK-2), with a 6.7, 4.2- and a 2-folds increase in gene expression, respectively. Meanwhile, the use of CM supplemented with either 5% pHPL or 2.5% pHPL, and UCM supplemented with either 5% pHPL or 2.5% pHPL showed low expression levels of CK-18 and CK-19 and no upregulation of UPK-2 level was observed. In contrast, the use of UCM with FBS has increased the levels of CK-18 and CK-19, however to a lesser extent compared to CM. At the cellular level, CK-18 and UPK-2 were only detected in CM/FBS supplemented group. Growth factor analysis revealed an increase in the expression levels of EGF, VEGF and PDGF in all of the differentiated groups. Conclusion Efficient ADSCs urothelial differentiation is dependent on the use of conditioned media. The presence of high concentrations of proliferation-inducing growth factors present in the pHPL reduces the efficiency of ADSCs differentiation towards the urothelial lineage. Additionally, the increase in EGF, VEGF and PDGF during the differentiation implicates them in the mechanism of urothelial cell differentiation.


2019 ◽  
Author(s):  
Yalan Yang ◽  
Zhiguo Liu ◽  
Weimin Zhao ◽  
Lei Huang ◽  
Tianwen Wu ◽  
...  

Abstract Background Bone marrow (BM) and umbilical cord (UC) are the main sources of mesenchymal stem cells (MSCs). These two MSCs display significant differences in many biological characteristics, yet the underlying molecular mechanisms need to be explored. Results In this study, to better understanding the biological features of MSCs, we isolated BMMSCs and UCMSCs from inbred Wuzhishan miniature pigs and generated the first global DNA methylation and gene expression profiles of porcine MSCs. The results showed that the osteogenic and adipogenic differentiation ability of porcine BMMSCs is stronger than that of UCMSCs. Stem cell surface marker CD90 were positively detected in both BMMSCs and UCMSCs. 587 genes were differentially methylated (280 hypermethylated and 307 hypomethylated) at the promoter regions between BMMSCs and UCMSCs. Meanwhile, 1,979 differentially expressed genes (1,407 up-regulated and 572 down-regulated) were identified between BMMSCs and UCMSCs. Integrative analysis reveals that 120 genes displayed differences in both gene expression and promoter methylation. Gene Ontology enrichment analysis revealed that these differential genes were associated with cell differentiation, cell migration, and immunogenicity properties. Remarkably, skeletal system development related genes were significantly hypomethylated and up-regulated in UCMSCs, while cell cycle genes were significantly higher down-regulated and hypermethylated, implying UCMSCs have higher cell proliferative activity and lower osteogenic differentiation potential than BMMSCs. Conclusions Our results indicate that DNA methylation plays an important role in regulating the biological characteristics differences between BMMSCs and UCMSCs. The study might provide a molecular theory basis for the application of porcine MSCs in human.


2019 ◽  
Vol 13 (12) ◽  
pp. 2204-2217 ◽  
Author(s):  
Ana I. Gonçalves ◽  
Dominika Berdecka ◽  
Márcia T. Rodrigues ◽  
Aysegul Dede Eren ◽  
Jan Boer ◽  
...  

2016 ◽  
Vol 34 (8) ◽  
pp. 563-571 ◽  
Author(s):  
Boyun Kim ◽  
Boram Lee ◽  
Mi-Kyung Kim ◽  
Seung Pyo Gong ◽  
Noh Hyun Park ◽  
...  

2019 ◽  
Vol 8 (9) ◽  
pp. 414-424 ◽  
Author(s):  
Jonas Schmalzl ◽  
Piet Plumhoff ◽  
Fabian Gilbert ◽  
Frank Gohlke ◽  
Christian Konrads ◽  
...  

Objectives The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. Methods In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. Results Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. Conclusion These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery. Cite this article: J. Schmalzl, P. Plumhoff, F. Gilbert, F. Gohlke, C. Konrads, U. Brunner, F. Jakob, R. Ebert, A. F. Steinert. Tendon-derived stem cells from the long head of the biceps tendon: Inflammation does not affect the regenerative potential. Bone Joint Res 2019;8:414–424. DOI: 10.1302/2046-3758.89.BJR-2018-0214.R2.


2020 ◽  
Vol 7 (3) ◽  
pp. 110 ◽  
Author(s):  
Kristen Newman ◽  
Kendra Clark ◽  
Bhuvaneswari Gurumurthy ◽  
Pallabi Pal ◽  
Amol V. Janorkar

This study aimed to probe the effect of formulation of scaffolds prepared using collagen and elastin-like polypeptide (ELP) and their resulting physico-chemical and mechanical properties on the adipogenic differentiation of human adipose derived stem cells (hASCs). Six different ELP-collagen scaffolds were prepared by varying the collagen concentration (2 and 6 mg/mL), ELP addition (6 mg/mL), or crosslinking of the scaffolds. FTIR spectroscopy indicated secondary bonding interactions between collagen and ELP, while scanning electron microscopy revealed a porous structure for all scaffolds. Increased collagen concentration, ELP addition, and presence of crosslinking decreased swelling ratio and increased elastic modulus and compressive strength of the scaffolds. The scaffold characteristics influenced cell morphology, wherein the hASCs seeded in the softer, non-crosslinked scaffolds displayed a spread morphology. We determined that stiffer and/or crosslinked elastin-collagen based scaffolds constricted the spreading of hASCs, leading to a spheroid morphology and yielded an enhanced adipogenic differentiation as indicated by Oil Red O staining. Overall, this study underscored the importance of spheroid morphology in adipogenic differentiation, which will allow researchers to create more physiologically-relevant three-dimensional, in vitro culture models.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 430 ◽  
Author(s):  
Sara Al-Ghadban ◽  
Zaidmara T. Diaz ◽  
Hallie J. Singer ◽  
Karya B. Mert ◽  
Bruce A. Bunnell

Lipedema is a painful loose connective tissue disorder characterized by a bilaterally symmetrical fat deposition in the lower extremities. The goal of this study was to characterize the adipose-derived stem cells (ASCs) of healthy and lipedema patients by the expression of stemness markers and the adipogenic and osteogenic differentiation potential. Forty patients, 20 healthy and 20 with lipedema, participated in this study. The stromal vascular fraction (SVF) was obtained from subcutaneous thigh (SVF-T) and abdomen (SVF-A) fat and plated for ASCs characterization. The data show a similar expression of mesenchymal markers, a significant increase in colonies (p < 0.05) and no change in the proliferation rate in ASCs isolated from the SVF-T or SVF-A of lipedema patients compared with healthy patients. The leptin gene expression was significantly increased in lipedema adipocytes differentiated from ASCs-T (p = 0.04) and the PPAR-γ expression was significantly increased in lipedema adipocytes differentiated from ASCs-A (p = 0.03) compared to the corresponding cells from healthy patients. No significant changes in the expression of genes associated with inflammation were detected in lipedema ASCs or differentiated adipocytes. These results suggest that lipedema ASCs isolated from SVF-T and SVF-A have a higher adipogenic differentiation potential compared to healthy ASCs.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zheng Feng ◽  
Yalan Yang ◽  
Zhiguo Liu ◽  
Weimin Zhao ◽  
Lei Huang ◽  
...  

Abstract Background Bone marrow (BM) and umbilical cord (UC) are the main sources of mesenchymal stem cells (MSCs). These two MSCs display significant differences in many biological characteristics, yet the underlying regulation mechanisms of these cells remain largely unknown. Results BMMSCs and UCMSCs were isolated from inbred Wuzhishan miniature pigs and the first global DNA methylation and gene expression profiles of porcine MSCs were generated. The osteogenic and adipogenic differentiation ability of porcine BMMSCs is greater than that of UCMSCs. A total of 1979 genes were differentially expressed and 587 genes were differentially methylated at promoter regions in these cells. Integrative analysis revealed that 102 genes displayed differences in both gene expression and promoter methylation. Gene ontology enrichment analysis showed that these genes were associated with cell differentiation, migration, and immunogenicity. Remarkably, skeletal system development-related genes were significantly hypomethylated and upregulated, whereas cell cycle genes were opposite in UCMSCs, implying that these cells have higher cell proliferative activity and lower differentiation potential than BMMSCs. Conclusions Our results indicate that DNA methylation plays an important role in regulating the differences in biological characteristics of BMMSCs and UCMSCs. Results of this study provide a molecular theoretical basis for the application of porcine MSCs in human medicine.


2017 ◽  
Vol 68 (6) ◽  
pp. 1341-1344
Author(s):  
Grigore Berea ◽  
Gheorghe Gh. Balan ◽  
Vasile Sandru ◽  
Paul Dan Sirbu

Complex interactions between stem cells, vascular cells and fibroblasts represent the substrate of building microenvironment-embedded 3D structures that can be grafted or added to bone substitute scaffolds in tissue engineering or clinical bone repair. Human Adipose-derived Stem Cells (hASCs), human umbilical vein endothelial cells (HUVECs) and normal dermal human fibroblasts (NDHF) can be mixed together in three dimensional scaffold free constructs and their behaviour will emphasize their potential use as seeding points in bone tissue engineering. Various combinations of the aforementioned cell lines were compared to single cell line culture in terms of size, viability and cell proliferation. At 5 weeks, viability dropped for single cell line spheroids while addition of NDHF to hASC maintained the viability at the same level at 5 weeks Fibroblasts addition to the 3D construct of stem cells and endothelial cells improves viability and reduces proliferation as a marker of cell differentiation toward osteogenic line.


Sign in / Sign up

Export Citation Format

Share Document