scholarly journals A methodology for simulating perched conditions in multilayer aquifer systems with 2D variably saturated flow

2021 ◽  
Author(s):  
Héctor Aguilera ◽  
Javier Heredia Díaz ◽  
Almudena Losa Román
1977 ◽  
Vol 8 (2) ◽  
pp. 65-82 ◽  
Author(s):  
Gunnar Gustafson

This paper describes a method for calculating the hydraulic properties of esker aquifers where a leakage to the aquifer is induced by pumping. The method is an extension of the channel method described in an earlier paper. As an example of the applicability of the method a short description of a performed pumptest is given.


1987 ◽  
Vol 22 (1) ◽  
pp. 49-64 ◽  
Author(s):  
J.F. Devlin ◽  
W.A. Gorman

Abstract The Gloucester Landfill is located near Ottawa, Ontario, on a northeast trending ridge of Quaternary age. The ridge comprises outwash sediments which make up two aquifer systems. A confined system exists next to bedrock, and is overlain by a silty-clayey stratum (the confining layer) which is, in turn, overlain by an unconfined aquifer system. Two independent volatile organic plumes have previously been identified at the landfill: the southeast plume, which has penetrated the confined aquifer system, and the northeast plume which is migrating in the unconfined aquifer. The distribution of volatile organic contaminants at the northeast plume site appears to be a function of two factors: (1) heterogeneities in the aquifer sediments are causing the channeling of contaminants through a narrow path; (2) the low fraction of organic carbon in the unconfined aquifer sediments at the northeast site is resulting in little retardation of the contaminants there, relative to those at the southeast site. Acetate was the only volatile fatty acid detected in the leachate. It was measurable only in areas where the volatile organic contamination was significant. Although methane was detected in the contaminated sediments, suggesting that microbial activity was present, the high concentration of acetate (>1000 ppm) which was detected down-gradient from the source area indicates that any biodegradation which is occurring is proceeding at a very slow rate.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1952
Author(s):  
Subrata Halder ◽  
Lingaraj Dhal ◽  
Madan K. Jha

Providing sustainable water supply for domestic needs and irrigated agriculture is one of the most significant challenges for the current century. This challenge is more daunting in coastal regions. Groundwater plays a pivotal role in addressing this challenge and hence, it is under growing stress in several parts of the world. To address this challenge, a proper understanding of groundwater characteristics in an area is essential. In this study, spatio-temporal analyses of pre-monsoon and post-monsoon groundwater-levels of two coastal aquifer systems (upper leaky confined and underlying confined) were carried out in Purba Medinipur District, West Bengal, India. Trend analysis of seasonal groundwater-levels of the two aquifers systems was also performed using Mann-Kendall test, Linear Regression test, and Innovative Trend test. Finally, the status of seawater intrusion in the two aquifers was evaluated using available groundwater-quality data of Chloride (Cl−) and Total Dissolve Solids (TDS). Considerable spatial and temporal variability was found in the seasonal groundwater-levels of the two aquifers. Further, decreasing trends were spotted in the pre-monsoon and post-monsoon groundwater-level time series of the leaky confined and confined aquifers, except pre-monsoon groundwater-levels in Contai-I and Deshpran blocks, and the post-monsoon groundwater-level in Ramnagar-I block for the leaky confined aquifer. The leaky confined aquifer in Contai-I, Contai-III, and Deshpran blocks and the confined aquifer in Nandigram-I and Nandigram-II blocks are vulnerable to seawater intrusion. There is an urgent need for the real-time monitoring of groundwater-levels and groundwater quality in both the aquifer systems, which can ensure efficient management of coastal groundwater reserves.


Sign in / Sign up

Export Citation Format

Share Document