Observed and projected changes in global climate zones based on Köppen climate classification

Author(s):  
Diyang Cui ◽  
Shunlin Liang ◽  
Dongdong Wang
2012 ◽  
Vol 21 (2) ◽  
pp. 111-123 ◽  
Author(s):  
Franziska Hanf ◽  
Janina Körper ◽  
Thomas Spangehl ◽  
Ulrich Cubasch

2019 ◽  
Vol 32 (19) ◽  
pp. 6467-6490 ◽  
Author(s):  
Kimmo Ruosteenoja ◽  
Timo Vihma ◽  
Ari Venäläinen

Abstract Future changes in geostrophic winds over Europe and the North Atlantic region were studied utilizing output data from 21 CMIP5 global climate models (GCMs). Changes in temporal means, extremes, and the joint distribution of speed and direction were considered. In concordance with previous research, the time mean and extreme scalar wind speeds do not change pronouncedly in response to the projected climate change; some degree of weakening occurs in the majority of the domain. Nevertheless, substantial changes in high wind speeds are identified when studying the geostrophic winds from different directions separately. In particular, in northern Europe in autumn and in parts of northwestern Europe in winter, the frequency of strong westerly winds is projected to increase by up to 50%. Concurrently, easterly winds become less common. In addition, we evaluated the potential of the GCMs to simulate changes in the near-surface true wind speeds. In ocean areas, changes in the true and geostrophic winds are mainly consistent and the emerging differences can be explained (e.g., by the retreat of Arctic sea ice). Conversely, in several GCMs the continental wind speed response proved to be predominantly determined by fairly arbitrary changes in the surface properties rather than by changes in the atmospheric circulation. Accordingly, true wind projections derived directly from the model output should be treated with caution since they do not necessarily reflect the actual atmospheric response to global warming.


2021 ◽  
Vol 34 (2) ◽  
pp. 509-525
Author(s):  
David P. Rowell ◽  
Rory G. J. Fitzpatrick ◽  
Lawrence S. Jackson ◽  
Grace Redmond

AbstractProjected changes in the intensity of severe rain events over the North African Sahel—falling from large mesoscale convective systems—cannot be directly assessed from global climate models due to their inadequate resolution and parameterization of convection. Instead, the large-scale atmospheric drivers of these storms must be analyzed. Here we study changes in meridional lower-tropospheric temperature gradient across the Sahel (ΔTGrad), which affect storm development via zonal vertical wind shear and Saharan air layer characteristics. Projected changes in ΔTGrad vary substantially among models, adversely affecting planning decisions that need to be resilient to adverse risks, such as increased flooding. This study seeks to understand the causes of these projection uncertainties and finds three key drivers. The first is intermodel variability in remote warming, which has strongest impact on the eastern Sahel, decaying toward the west. Second, and most important, a warming–advection–circulation feedback in a narrow band along the southern Sahara varies in strength between models. Third, variations in southern Saharan evaporative anomalies weakly affect ΔTGrad, although for an outlier model these are sufficiently substantive to reduce warming here to below that of the global mean. Together these uncertain mechanisms lead to uncertain southern Saharan/northern Sahelian warming, causing the bulk of large intermodel variations in ΔTGrad. In the southern Sahel, a local negative feedback limits the contribution to uncertainties in ΔTGrad. This new knowledge of ΔTGrad projection uncertainties provides understanding that can be used, in combination with further research, to constrain projections of severe Sahelian storm activity.


2019 ◽  
Vol 276 ◽  
pp. 04003
Author(s):  
I Wayan Sutapa ◽  
Muhammad Galib Ishak ◽  
Vera Wim Andiese

Global Climate change has been discussed in the High-Level Conference in Rio de Janeiro, Brazil in 1992 and has given more impacts in the world. One of the global climate exchanges is the rising of intensity and frequency of climate extreme which included drought, flood, and hurricane. The objective of this study was to investigate the effects of climate change on evapotranspiration and rainfall for river water discharge of Rawa. The investigation has been carried out using daily data and analyzed on a daily, monthly and yearly. The rain stations that represent the location of this research are Palolo, Kulawi, and Wuasa. Climatological station nearest to the research station used Bora. Climate trends and projected changes in the method of Makesens analysis (Mann-Kendall, Sens) and the correlation of rainfall and evapotranspiration discharge used linear regression equation. Similarly, the correlation between changes in soil water storage with rainfall, evapotranspiration, and discharge was analyzed in a linear manner. The conclusion of this study is the climate changes in the River of Rawa watershed was characterized by slowly increasing temperature, increasing rainfall, and decreasing discharge.


2020 ◽  
Vol 182 ◽  
pp. 109114 ◽  
Author(s):  
Ying Liu ◽  
Kate Lillepold ◽  
Jan C. Semenza ◽  
Yesim Tozan ◽  
Mikkel B.M. Quam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document