scholarly journals Proteomic and genomic characterization of a yeast model for Ogden syndrome

Yeast ◽  
2016 ◽  
Vol 34 (1) ◽  
pp. 19-37 ◽  
Author(s):  
Max J. Dörfel ◽  
Han Fang ◽  
Jonathan Crain ◽  
Michael Klingener ◽  
Jake Weiser ◽  
...  
2016 ◽  
Author(s):  
Max J. Döerfel ◽  
Han Fang ◽  
Jonathan Crain ◽  
Michael Klingener ◽  
Jake Weiser ◽  
...  

AbstractNaa10 is a Nα-terminal acetyltransferase that, in a complex with its auxiliary subunit Naa15, co-translationally acetylates the α-amino group of newly synthetized proteins as they emerge from the ribosome. Roughly 40-50% of the human proteome is acetylated by Naa10, rendering this an enzyme with one of the most broad substrate ranges known. Recently, we reported an X-linked disorder of infancy, Ogden syndrome, in two families harboring a c.109T>C (p.Ser37Pro) variant in NAA10. In the present study we performed in-depth characterization of a yeast model of Ogden syndrome. Stress tests and proteomic analyses suggest that the S37P mutation disrupts Naa10 function thereby reducing cellular fitness, possibly due to an impaired functionality of molecular chaperones, Hsp104, Hsp40 and the Hsp70 family. Microarray and RNA-seq revealed a pseudo-diploid gene expression profile in ΔNaa10 cells, likely responsible for a mating defect. In conclusion, the data presented here further support the disruptive nature of the S37P/Ogden mutation and identify affected cellular processes potentially contributing to the severe phenotype seen in Ogden syndrome.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
AS Lima ◽  
B Lukas ◽  
J Novak ◽  
AC Figueiredo ◽  
LG Pedro ◽  
...  

2020 ◽  
Vol 20 (7) ◽  
pp. 490-500 ◽  
Author(s):  
Justin S. Becker ◽  
Amir T. Fathi

The genomic characterization of acute myeloid leukemia (AML) by DNA sequencing has illuminated subclasses of the disease, with distinct driver mutations, that might be responsive to targeted therapies. Approximately 15-23% of AML genomes harbor mutations in one of two isoforms of isocitrate dehydrogenase (IDH1 or IDH2). These enzymes are constitutive mediators of basic cellular metabolism, but their mutated forms in cancer synthesize an abnormal metabolite, 2- hydroxyglutarate, that in turn acts as a competitive inhibitor of multiple gene regulatory enzymes. As a result, leukemic IDH mutations cause changes in genome structure and gene activity, culminating in an arrest of normal myeloid differentiation. These discoveries have motivated the development of a new class of selective small molecules with the ability to inhibit the mutant IDH enzymes while sparing normal cellular metabolism. These agents have shown promising anti-leukemic activity in animal models and early clinical trials, and are now entering Phase 3 study. This review will focus on the growing preclinical and clinical data evaluating IDH inhibitors for the treatment of IDH-mutated AML. These data suggest that inducing cellular differentiation is central to the mechanism of clinical efficacy for IDH inhibitors, while also mediating toxicity for patients who experience IDH Differentiation Syndrome. Ongoing trials are studying the efficacy of IDH inhibitors in combination with other AML therapies, both to evaluate potential synergistic combinations as well as to identify the appropriate place for IDH inhibitors within existing standard-of-care regimens.


Sign in / Sign up

Export Citation Format

Share Document