Power-Law Behaviour of Second-Order Correlation in Isotropic Turbulence

Author(s):  
N. Phan-Thien ◽  
R. A. Antonia
2021 ◽  
Vol 126 (25) ◽  
Author(s):  
Kartik P. Iyer ◽  
Gregory P. Bewley ◽  
Luca Biferale ◽  
Katepalli R. Sreenivasan ◽  
P. K. Yeung

2019 ◽  
Vol 7 (4) ◽  
Author(s):  
Lisa Markhof ◽  
Mikhail Pletyukov ◽  
Volker Meden

The nonlinear Luttinger liquid phenomenology of one-dimensional correlated Fermi systems is an attempt to describe the effect of the band curvature beyond the Tomonaga-Luttinger liquid paradigm. It relies on the observation that the dynamical structure factor of the interacting electron gas shows a logarithmic threshold singularity when evaluated to first order perturbation theory in the two-particle interaction. This term was interpreted as the linear one in an expansion which was conjectured to resum to a power law. A field theory, the mobile impurity model, which is constructed such that it provides the power law in the structure factor, was suggested to be the proper effective model and used to compute the single-particle spectral function. This forms the basis of the nonlinear Luttinger liquid phenomenology. Surprisingly, the second order perturbative contribution to the structure factor was so far not studied. We first close this gap and show that it is consistent with the conjectured power law. Secondly, we critically assess the steps leading to the mobile impurity Hamiltonian. We show that the model does not allow to include the effect of the momentum dependence of the (bulk) two-particle potential. This dependence was recently shown to spoil power laws in the single-particle spectral function which previously were believed to be part of the Tomonaga-Luttinger liquid universality. Although our second order results for the structure factor are consistent with power-law scaling, this raises doubts that the conjectured nonlinear Luttinger liquid phenomenology can be considered as universal. We conclude that more work is required to clarify this.


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Tim Blackwell ◽  
Dan Bratton

The tail of the particle swarm optimisation (PSO) position distribution at stagnation is shown to be describable by a power law. This tail fattening is attributed to particle bursting on all length scales. The origin of the power law is concluded to lie in multiplicative randomness, previously encountered in the study of first-order stochastic difference equations, and generalised here to second-order equations. It is argued that recombinant PSO, a competitive PSO variant without multiplicative randomness, does not experience tail fattening at stagnation.


2019 ◽  
Vol 871 ◽  
pp. 271-304 ◽  
Author(s):  
Adrian C. H. Lai ◽  
Adrian Wing-Keung Law ◽  
E. Eric Adams

Buoyant jets or forced plumes are discharged into a turbulent ambient in many natural and engineering applications. The background turbulence generally affects the mixing characteristics of the buoyant jet, and the extent of the influence depends on the characteristics of both the jet discharge and ambient. Previous studies focused on the experimental investigation of the problem (for pure jets or plumes), but the findings were difficult to generalize because suitable scales for normalization of results were not known. A model to predict the buoyant jet mixing in the presence of background turbulence, which is essential in many applications, is also hitherto not available even for a background of homogeneous and isotropic turbulence (HIT). We carried out experimental and theoretical investigations of a buoyant jet discharging into background HIT. Buoyant jets were designed to be in the range of $1<z/l_{M}<5$, where $l_{M}=M_{o}^{3/4}/F_{o}^{1/2}$ is the momentum length scale, with $z/l_{M}<\sim 1$ and $z/l_{M}>\sim 6$ representing the asymptotic cases of pure jets and plumes, respectively. The background turbulence was generated using a random synthetic jet array, which produced a region of approximately isotropic and homogeneous field of turbulence to be used in the experiments. The velocity scale of the jet was initially much higher, and the length scale smaller, than that of the background turbulence, which is typical in most applications. Comprehensive measurements of the buoyant jet mixing characteristics were performed up to the distance where jet breakup occurred. Based on the experimental findings, a critical length scale $l_{c}$ was identified to be an appropriate normalizing scale. The momentum flux of the buoyant jet in background HIT was found to be conserved only if the second-order turbulence statistics of the jet were accounted for. A general integral jet model including the background HIT was then proposed based on the conservation of mass (using the entrainment assumption), total momentum and buoyancy fluxes, and the decay function of the jet mean momentum downstream. Predictions of jet mixing characteristics from the new model were compared with experimental observation, and found to be generally in agreement with each other.


2016 ◽  
Vol 30 (30) ◽  
pp. 1650207 ◽  
Author(s):  
R. Acosta Diaz ◽  
N. F. Svaiter

We discuss finite-size effects in one disordered [Formula: see text] model defined in a [Formula: see text]-dimensional Euclidean space. We consider that the scalar field satisfies periodic boundary conditions in one dimension and it is coupled with a quenched random field. In order to obtain the average value of the free energy of the system, we use the replica method. We first discuss finite-size effects in the one-loop approximation in [Formula: see text] and [Formula: see text]. We show that in both cases, there is a critical length where the system develop a second-order phase transition, when the system presents long-range correlations with power-law decay. Next, we improve the above result studying the gap equation for the size-dependent squared mass, using the composite field operator method. We obtain again that the system present a second-order phase transition with long-range correlation with power-law decay.


2002 ◽  
Vol 451 ◽  
pp. 99-108 ◽  
Author(s):  
P. ORLANDI ◽  
R. A. ANTONIA

The dynamic equation for the second-order moment of a passive scalar increment is investigated in the context of DNS data for decaying isotropic turbulence at several values of the Schmidt number Sc, between 0.07 and 7. When the terms of the equation are normalized using Kolmogorov and Batchelor scales, approximate independence from Sc is achieved at sufficiently small r/ηB (r is the separation across which the increment is estimated and ηB is the Batchelor length scale). The results imply approximate independence of the mixed velocity-scalar derivative skewness from Sc and underline the importance of the non-stationarity. At small r/ηB, the contribution from the non-stationarity increases as Sc increases.


2006 ◽  
Vol 73 (6) ◽  
Author(s):  
P. Burattini ◽  
P. Lavoie ◽  
A. Agrawal ◽  
L. Djenidi ◽  
R. A. Antonia

2011 ◽  
Vol 1 (3) ◽  
pp. 032008
Author(s):  
Shuxiao Wan ◽  
Zheng Ran

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Hamit Yurtseven

The Pippard relations are verified near the melting point for cyclohexane. The experimental data for the thermal expansivity is analyzed according to a power-law formula using the critical exponent and the thermodynamic quantities are calculated close to the melting point for this molecular organic compound. This applies to those compounds showing a second order transition prior to melting.


2006 ◽  
Author(s):  
J. Meyers ◽  
P. Sagaut ◽  
B. J. Geurts

We present a framework which can be used to rigorously assess and compare large-eddy simulation methods. We apply this to LES of homogeneous isotropic turbulence using a Smagorin-sky model and three different discretizations. By systematically varying the simulation resolution and the Smagorinsky coefficient, one can determine parameter regions for which one, two or multiple flow predictions are simultaneously predicted with approximately minimal error. To this end errors on the predicted longitudinal integral length scale, the resolved kinetic energy and the resolved enstrophy are considered. Parameter regions where all considered errors are simultaneously (nearly) minimal are entitled ‘multi-objective optimal’ parameter regions. Surprisingly, we find that a standard second-order method has a larger ‘multi-objective optimal’ parameter region than two considered fourth order methods. Moreover, the errors in the respective ‘multi-objective optimal’ regions are also lowest for the second-order scheme.


Sign in / Sign up

Export Citation Format

Share Document