Non-Linear Vibration of a Cantilever Beam of Variable Cross-Section

Author(s):  
A. Pielorz ◽  
W. Nadolski
Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 772
Author(s):  
Xianming He ◽  
Dongxiao Li ◽  
Hong Zhou ◽  
Xindan Hui ◽  
Xiaojing Mu

The piezoelectric vibration energy harvester (PVEH) based on the variable cross-section cantilever beam (VCSCB) structure has the advantages of uniform axial strain distribution and high output power density, so it has become a research hotspot of the PVEH. However, its electromechanical model needs to be further studied. In this paper, the bidirectional coupled distributed parameter electromechanical model of the MEMS VCSCB based PVEH is constructed, analytically solved, and verified, which laid an important theoretical foundation for structural design and optimization, performance improvement, and output prediction of the PVEH. Based on the constructed model, the output performances of five kinds of VCSCB based PVEHs with different cross-sectional shapes were compared and analyzed. The results show that the PVEH with the concave quadratic beam shape has the best output due to the uniform surface stress distribution. Additionally, the influence of the main structural parameters of the MEMS trapezoidal cantilever beam (TCB) based PVEH on the output performance of the device is theoretically analyzed. Finally, a prototype of the Aluminum Nitride (AlN) TCB based PVEH is designed and developed. The peak open-circuit voltage and normalized power density of the device can reach 5.64 V and 742 μW/cm3/g2, which is in good agreement with the theoretical model value. The prototype has wide application prospects in the power supply of the wireless sensor network node such as the structural health monitoring system and the Internet of Things.


2020 ◽  
Vol 10 (5) ◽  
pp. 1694
Author(s):  
Heying Feng ◽  
Yehui Peng ◽  
Guangfu Bin ◽  
Yiping Shen

A gas-kinetic scheme (GKS) based on an unstructured grid is applied to simulate the evolution of the fluid motions in exponential variable cross-section resonators. The effects of the acoustic field intensity on the oscillatory pressure, velocity, temperature, and flow streaming structure were investigated numerically, and the model was validated. The results demonstrate that the geometry and driving strength are the main factors affecting the final performance of the system. For the quasi-linear and moderate non-linear cases in optimum exponential tube, the periodic generation, evolution, and shedding of vortices in flow fields are associated with the storage and release of energy, which is the transmission mode of the third type of direct current (DC) flow, and its driving mechanism is attributed to the asymmetrical pressure and temperature. Meanwhile, some new physical characteristics were also discovered for the highly non-linear case, e.g., the disorder and unsteadiness of the flow direction accomplished with turbulent flow streaming structures. The secondary flow is manifested as multiscale, irregular and unsteady vortices throughout the tube. The smallest increment of pressure and velocity amplitude occurs concurrently with the biggest increment of temperature amplitude. These evidences suggest that there is an optimal driving strength, even for a good configuration tube, with which the maximum efficiency can be obtained.


2012 ◽  
Vol 184-185 ◽  
pp. 146-150
Author(s):  
Chun Li Wei ◽  
Wei Zhang ◽  
Hui Wei

Abstract: In order to achieve the design of micro-machined micro- mechanical cantilever beam of variable cross-section through the PRO / MECHANICA micro-mechanical variable cross-section cantilever beam to mathematical modeling , analysis model , a standard static analysis , the primary design model , the local sensitivity analysis, global sensitivity analysis and optimization design aspects . By the analysis of research data , this body design is feasible and adaptable stress distribution characteristics of a good , good appearance of the structure .


2012 ◽  
Vol 557-559 ◽  
pp. 822-825
Author(s):  
Lv Zhou Ma ◽  
Jian Liu ◽  
Xun Lin Diao ◽  
Xiao Dong Jia

Based on MATLAB platform, program VCBEP (Variable Cross-section Beam Element based on Positional FEM) is compiled, and the cantilever beam with linear profile and the parabolic simple supported beam are calculated. The variable cross-section beam element is proposed to analyze rectangular beam whose beam depth changes in a linear or quadratic parabolic way and beam width is fixed and the exact solution can be obtained.


Sign in / Sign up

Export Citation Format

Share Document