On the importance of proper kernel normalization procedure in nonlocal integral continuum modeling of nanobeams

Author(s):  
Amin Anjomshoa ◽  
Behrooz Hassani
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ákos Sudár ◽  
Gergely Futaki ◽  
Róbert Kovács

Abstract The thermal modeling of biological systems is increasingly important in the development of more advanced and more precise techniques such as ultrasound surgery. One of the primary barriers is the complexity of biological materials: the geometrical, structural, and material properties vary in a wide range. In the present paper, we focus on the continuum modeling of heterogeneous materials of biological origin. There are numerous examples in the literature for non-Fourier thermal models. However, as we realized, they are associated with a few common misconceptions. Therefore, we first aim to clarify the basic concepts of non-Fourier thermal models. These concepts are demonstrated by revisiting two experiments from the literature in which the Cattaneo–Vernotte and the dual phase lag models are utilized. Our investigation revealed that these non-Fourier models are based on misinterpretations of the measured data, and the seeming deviation from Fourier’s law originates from the source terms and boundary conditions.


2015 ◽  
Vol 24 ◽  
pp. 252-263 ◽  
Author(s):  
Min Zhang ◽  
Jun Yao ◽  
Hai Sun ◽  
Jian-lin Zhao ◽  
Dong-yan Fan ◽  
...  

2009 ◽  
Vol 388 (13) ◽  
pp. 2705-2716 ◽  
Author(s):  
D. Ngoduy ◽  
S.P. Hoogendoorn ◽  
R. Liu

1987 ◽  
Vol 50 (9) ◽  
pp. 492-494 ◽  
Author(s):  
Albert D. Richards ◽  
Brian E. Thompson ◽  
Herbert H. Sawin

2006 ◽  
Vol 504 (1-2) ◽  
pp. 269-273
Author(s):  
H.Y. Chan ◽  
M.P. Srinivasan ◽  
F. Benistant ◽  
K.R. Mok ◽  
Lap Chan ◽  
...  

Author(s):  
Abdelfettah Fredj ◽  
Aaron Dinovitzer

Pipeline integrity is affected by the action of external soil loads in addition to internal fluid pressure. External soil loads can be generated by landslides or at sites subject to ground subsidence, heave or seismic effects. Under these varied conditions of ground movement potential pipeline safety involves constraints on design and operations. The design processes includes developing an understanding of strains that could be imposed on the pipe (strain demand) and strain limits that the pipe can withstand without failure. The ability to predict the pipeline load, stress or strains state in the presence of soil restraint and/or soil displacement induced loading is not well described in design standards or codes of practice. This paper describes the ongoing work involved in a study investigating the mechanical behavior of buried pipelines interacting with active landslides. Detailed pipe-soil interaction analyses were completed with a 3D continuum SPH method. This paper describes the LS-DYNA numerical modeling process, previously developed by the authors, which was refined and applied to site-specific conditions. To illustrate the performance of the modeling process to consider a translational slide, additional numerical model validation was completed and is described in this paper. These comparisons illustrate that good agreement was observed between the modeling results and experimental full scale trial results. Sample results of the application of the validated 3D continuum modeling process are presented. These results are being used to develop generalized trends in pipeline response to slope movements. The paper describes both the progress achieved to date and the future potential for simplified engineering design tools to assess the load or deformation capacity requirements of buried pipelines exposed to different types of slope movement.


Sign in / Sign up

Export Citation Format

Share Document