Simulation of the Response of Buried Pipelines to Slope Movement Using 3D Continuum Modeling
Pipeline integrity is affected by the action of external soil loads in addition to internal fluid pressure. External soil loads can be generated by landslides or at sites subject to ground subsidence, heave or seismic effects. Under these varied conditions of ground movement potential pipeline safety involves constraints on design and operations. The design processes includes developing an understanding of strains that could be imposed on the pipe (strain demand) and strain limits that the pipe can withstand without failure. The ability to predict the pipeline load, stress or strains state in the presence of soil restraint and/or soil displacement induced loading is not well described in design standards or codes of practice. This paper describes the ongoing work involved in a study investigating the mechanical behavior of buried pipelines interacting with active landslides. Detailed pipe-soil interaction analyses were completed with a 3D continuum SPH method. This paper describes the LS-DYNA numerical modeling process, previously developed by the authors, which was refined and applied to site-specific conditions. To illustrate the performance of the modeling process to consider a translational slide, additional numerical model validation was completed and is described in this paper. These comparisons illustrate that good agreement was observed between the modeling results and experimental full scale trial results. Sample results of the application of the validated 3D continuum modeling process are presented. These results are being used to develop generalized trends in pipeline response to slope movements. The paper describes both the progress achieved to date and the future potential for simplified engineering design tools to assess the load or deformation capacity requirements of buried pipelines exposed to different types of slope movement.