Establishment of a Hydrogen Peroxide Resistant Variant of Renal Tubular Epithelial Cells: Role of Calcium-Independent Phospholipase A2 in Cell Damage

1993 ◽  
Vol 301 (1) ◽  
pp. 119-128 ◽  
Author(s):  
M.S. Goligorsky ◽  
M.A. Morgan ◽  
S. Lyubsky ◽  
R.W. Gross ◽  
D.T. Adams ◽  
...  
2016 ◽  
Vol 259 ◽  
pp. S174 ◽  
Author(s):  
G. Liu ◽  
J.C. Bian ◽  
X.Z. Liu ◽  
Y. Yuan ◽  
J.H. Gu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jiayi Wan ◽  
Mingyang Hu ◽  
Ziming Jiang ◽  
Dongwei Liu ◽  
Shaokang Pan ◽  
...  

Diabetic nephropathy is considered one of the most common microvascular complications of diabetes and the pathophysiology involves multiple factors. Progressive diabetic nephropathy is believed to be related to the structure and function of the tubular epithelial cells in the kidney. However, the role of lysine acetylation in lesions of the renal tubular epithelial cells arising from hyperglycemia is poorly understood. Consequently, in this study, we cultured mouse renal tubular epithelial cells in vitro under high glucose conditions and analyzed the acetylation levels of proteins by liquid chromatography-high-resolution mass spectrometry. We identified 48 upregulated proteins and downregulated 86 proteins. In addition, we identified 113 sites with higher acetylation levels and 374 sites with lower acetylation levels. Subcellular localization analysis showed that the majority of the acetylated proteins were located in the mitochondria (43.17%), nucleus (28.57%) and cytoplasm (16.19%). Enrichment analysis indicated that these acetylated proteins are primarily associated with oxidative phosphorylation, the citrate cycle (TCA cycle), metabolic pathways and carbon metabolism. In addition, we used the MCODE plug-in and the cytoHubba plug-in in Cytoscape software to analyze the PPI network and displayed the first four most compact MOCDEs and the top 10 hub genes from the differentially expressed proteins between global and acetylated proteomes. Finally, we extracted 37 conserved motifs from 4915 acetylated peptides. Collectively, this comprehensive analysis of the proteome reveals novel insights into the role of lysine acetylation in tubular epithelial cells and may make a valuable contribution towards the identification of the pathological mechanisms of diabetic nephropathy.


2001 ◽  
Vol 12 (11) ◽  
pp. 2384-2391 ◽  
Author(s):  
NORISHI UEDA ◽  
SIMONE M. R. CAMARGO ◽  
XIAOMAN HONG ◽  
ALEXEI G. BASNAKIAN ◽  
PATRICK D. WALKER ◽  
...  

Abstract. Ceramide has been implicated to play an important role in the cell signaling pathway involved in apoptosis. Most studies that have used the apoptotic model of cellular injury have suggested that enhanced ceramide generation is the result of the breakdown of sphingomyelin by sphingomyelinases. However, the role of ceramide synthase in enhanced ceramide generation in response to oxidant stress has not been previously examined in any tissue. Hydrogen peroxide (H2O2) (1 mM) resulted in a rapid increase in ceramide generation (as measured by in vitro diacylglycerol kinase assay) in LLC-PK1 cells. The intracellular ceramide level was significantly increased at 5 min after exposure of cells to H2O2 and thereafter continuously increased up to 60 min. H2O2 also resulted in a rapid increase (within 5 min) in ceramide synthase activity (as measured by incorporation of [14C] from the labeled palmytoyl—CoA into dihydroceramide) in microsomes. In contrast, the exposure of cells to H2O2 did not result in any significant change in sphingomyelin content or acid or neutral sphingomyelinase activity. An increase in ceramide production induced by H2O2 preceded any evidence of DNA damage and cell death. The specific inhibitor of ceramide synthase, fumonisin B1 (50 μM), was able to suppress H2O2-induced ceramide generation and provided a marked protection against H2O2-induced DNA strand breaks, DNA fragmentation, and cell death. Taken together, these data provide the first evidence that H2O2 is a regulator of ceramide synthase rather than sphingomyelinases and that ceramide synthase—dependent ceramide generation plays a key role in DNA damage and cell death in oxidant stress to renal tubular epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document