Development of a Bicistronic Vector Driven by the Human Polypeptide Chain Elongation Factor 1α Promoter for Creation of Stable Mammalian Cell Lines That Express Very High Levels of Recombinant Proteins

1998 ◽  
Vol 252 (2) ◽  
pp. 368-372 ◽  
Author(s):  
Stephen Hobbs ◽  
Sarawut Jitrapakdee ◽  
John C. Wallace
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alessandro T. Caputo ◽  
Oliver M. Eder ◽  
Hana Bereznakova ◽  
Heleen Pothuis ◽  
Albert Ardevol ◽  
...  

AbstractPuromycin and the Streptomyces alboniger-derived puromycin N-acetyltransferase (PAC) enzyme form a commonly used system for selecting stably transfected cultured cells. The crystal structure of PAC has been solved using X-ray crystallography, revealing it to be a member of the GCN5-related N-acetyltransferase (GNAT) family of acetyltransferases. Based on structures in complex with acetyl-CoA or the reaction products CoA and acetylated puromycin, four classes of mutations in and around the catalytic site were designed and tested for activity. Single-residue mutations were identified that displayed a range of enzymatic activities, from complete ablation to enhanced activity relative to wild-type (WT) PAC. Cell pools of stably transfected HEK293 cells derived using two PAC mutants with attenuated activity, Y30F and A142D, were found to secrete up to three-fold higher levels of a soluble, recombinant target protein than corresponding pools derived with the WT enzyme. A third mutant, Y171F, appeared to stabilise the intracellular turnover of PAC, resulting in an apparent loss of selection stringency. Our results indicate that the structure-guided manipulation of PAC function can be utilised to enhance selection stringency for the derivation of mammalian cell lines secreting elevated levels of recombinant proteins.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 462
Author(s):  
Jeffrey W. Ecker ◽  
Greg A. Kirchenbaum ◽  
Spencer R. Pierce ◽  
Amanda L. Skarlupka ◽  
Rodrigo B. Abreu ◽  
...  

Influenza viruses infect millions of people each year, resulting in significant morbidity and mortality in the human population. Therefore, generation of a universal influenza virus vaccine is an urgent need and would greatly benefit public health. Recombinant protein technology is an established vaccine platform and has resulted in several commercially available vaccines. Herein, we describe the approach for developing stable transfected human cell lines for the expression of recombinant influenza virus hemagglutinin (HA) and recombinant influenza virus neuraminidase (NA) proteins for the purpose of in vitro and in vivo vaccine development. HA and NA are the main surface glycoproteins on influenza virions and the major antibody targets. The benefits for using recombinant proteins for in vitro and in vivo assays include the ease of use, high level of purity and the ability to scale-up production. This work provides guidelines on how to produce and purify recombinant proteins produced in mammalian cell lines through either transient transfection or generation of stable cell lines from plasmid creation through the isolation step via Immobilized Metal Affinity Chromatography (IMAC). Collectively, the establishment of this pipeline has facilitated large-scale production of recombinant HA and NA proteins to high purity and with consistent yields, including glycosylation patterns that are very similar to proteins produced in a human host.


1989 ◽  
Vol 159 (3) ◽  
pp. 1269-1274 ◽  
Author(s):  
J.G. Comerford ◽  
J.R. Gibson ◽  
A.P. Dawson ◽  
I. Gibson

Sign in / Sign up

Export Citation Format

Share Document