scholarly journals Mammalian Oocyte Activation by the Synergistic Action of Discrete Sperm Head Components: Induction of Calcium Transients and Involvement of Proteolysis

2000 ◽  
Vol 217 (2) ◽  
pp. 386-393 ◽  
Author(s):  
Anthony C.F. Perry ◽  
Teruhiko Wakayama ◽  
Ian M. Cooke ◽  
Ryuzo Yanagimachi
Reproduction ◽  
2017 ◽  
Vol 154 (3) ◽  
pp. 307-318 ◽  
Author(s):  
Luis Águila ◽  
Ricardo Felmer ◽  
María Elena Arias ◽  
Felipe Navarrete ◽  
David Martin-Hidalgo ◽  
...  

The efficiency of intracytoplasmic sperm injection (ICSI) in the bovine is low compared to other species. It is unknown whether defective oocyte activation and/or sperm head decondensation limit the success of this technique in this species. To elucidate where the main obstacle lies, we used homologous and heterologous ICSI and parthenogenetic activation procedures. We also evaluated whetherin vitromaturation negatively impacted the early stages of activation after ICSI. Here we showed that injected bovine sperm are resistant to nuclear decondensation by bovine oocytes and this is only partly overcome by exogenous activation. Remarkably, when we used heterologous ICSI,in vivo-matured mouse eggs were capable of mounting calcium oscillations and displaying normal PN formation following injection of bovine sperm, althoughin vitro-matured mouse oocytes were unable to do so. Together, our data demonstrate that bovine sperm are especially resistant to nuclear decondensation byin vitro-matured oocytes and this deficiency cannot be simply overcome by exogenous activation protocols, even by inducing physiological calcium oscillations. Therefore, the inability of a suboptimal ooplasmic environment to induce sperm head decondensation limits the success of ICSI in the bovine. Studies aimed to improve the cytoplasmic milieu ofin vitro-matured oocytes and to replicate the molecular changes associated within vivocapacitation and acrosome reaction will deepen our understanding of the mechanism of fertilization and improve the success of ICSI in this species.


Zygote ◽  
2000 ◽  
Vol 8 (4) ◽  
pp. 285-293 ◽  
Author(s):  
Martin Wilding ◽  
Marcella Marino ◽  
Vincenzo Monfrecola ◽  
Brian Dale

We have used confocal microscopy to measure calcium waves and examine the distribution of tubulin in oocytes of the ascidian Ciona intestinalis during meiosis. We show that the fertilisation calcium wave in these oocytes originates in the vegetal pole. The sperm penetration site and female meiotic apparatus are found at opposite poles of the oocyte at fertilisation, confirming that C. intestinalis sperm enter in the vegetal pole of the oocyte. Following fertilisation, ascidian oocytes are characterised by repetitive calcium waves. Meiosis I-associated waves originate at the vegetal pole of the oocyte, and travel towards the animal pole. In contrast, the calcium waves during meiosis II initiate at the oocyte equator, and cross the oocyte cytoplasm perpendicular to the point of emission of the polar body. Immunolocalisation of tubulin during meiosis II reveals that the male centrosome is also located between animal and vegetal poles prior to initiation of the meiosis II-associated calcium waves, suggesting that the male centrosome influences the origin of these calcium transients. Ascidians are also characterised by an increase in sensitivity to intracellular calcium release after fertilisation. We show that this is not simply an effect of oocyte activation. The data strongly suggest a role for the male centrosome in controlling the mechanism and localisation of post-fertilisation intracellular calcium waves.


2010 ◽  
Vol 22 (1) ◽  
pp. 346
Author(s):  
M. Nakai ◽  
J. Ito ◽  
K. Sato ◽  
J. Noguchi ◽  
H. Kaneko ◽  
...  

In mammals, repetitive increases of the intracellular Ca2+ level, known as Ca2+ oscillations, are observed in oocytes immediately after sperm-oocyte fusion, which is a prerequisite event for oocyte activation. Previous studies indicate that phospholipase C zeta (PLCζ), a strong candidate sperm factor for triggering Ca2+ oscillations, is localized in the sperm head of several mammalian species. We have reported that the rate of pronucleus formation in oocytes injected with a sperm head is lower than that for oocytes injected with a whole spermatozoon (Nakai et al. 2009 IETS). This has given rise to a hypothesis that not only the sperm head but also the tail play a role in inducing oocyte activation in pigs. In this study, we attempted to detect the localization of PLCζ in the pig sperm tail and also its ability to activate porcine oocytes after injection. To clarify the localization of PLCζ in pig sperm, frozen-thawed ejaculated pig sperm were immunostained using an anti-PLCζ antibody that has been reported previously (Kurokawa et al. 2005). Western blotting was also carried out to examine whether PLCζ (72 kDa) was present in the sperm tail. Sperm tails were detached from the head by sonication and then collected after centrifugation in a Percoll density gradient. We also confirmed whether the sperm tail itself had the ability to trigger oocyte activation using the following 4 injection groups: (1)1 sperm head (Head), (2) 1 sperm tail (Tail), (3) 1 sperm head and 1 tail (Head + Tail), and (4) Sham. The nuclear status of the injected oocyte was evaluated at 10 h after injection. In the present study, we used 3 sperm samples that were prepared from different boars. In pig sperm, the acrosome, tail, and post-acrosomal regions were stained by the PLCζ antibody. The signals in both the post-acrosomal and tail regions disappeared after pretreatment with antigenic peptide, but that in the acrosome region was retained. Furthermore, we confirmed the presence of a band of approximately 72 kDa from the sperm tail and also confirmed its disappearance upon pretreatment with antigenic peptide. The rates of oocytes released from metaphase-II arrest in the Head, Tail, and Head+Tail groups were significantly higher than that in the Sham group (P < 0.05 by ANOVA andTukey test). However, most of the oocytes in the Tail group failed to form pronuclei and showed other meiotic stages (anaphase-II, telophase-II, or metaphase-III). In conclusion, we have shown that PLCζ is expressed in the post-acrosomal and tail region of pig sperm. It is suggested that, in the pig, the sperm tail participates in the triggering of oocyte activation. The authors thankRafaelA. Fissore (Department ofVeterinary and Animal Sciences, University of Massachusetts Amherst) for providing the antigenic peptide for PLCζ. This study was supported in part by JSPS Fellowship (71310042 to M.N.) from the Japanese Society for Promotion of Science (JSPS).


2002 ◽  
Vol 78 ◽  
pp. S164-S165
Author(s):  
Paula A.A.S Navarro ◽  
Lin Liu ◽  
James R Trimarchi ◽  
Rui A Ferriani ◽  
David L Keefe

Zygote ◽  
1999 ◽  
Vol 7 (3) ◽  
pp. 187-193 ◽  
Author(s):  
T. Kasai ◽  
K. Hoshi ◽  
R. Yanagimachi

To analyse the effect of the state of the sperm plasma membrane on oocyte activation rate following intracytoplasmic sperm injection (ICSI), three types of human and mouse spermatozoa (intact, immobilised and Triton X-100 treated) were individually injected into mouse oocytes. At 30, 60 and 120 min after injection, maternal chromosomes and sperm nuclei within oocytes were examined. Following human sperm injection, the fastest and the most efficient oocyte activation and sperm head decondensation occurred when the spermatozoa were treated with Triton X-100. Intact spermatozoa were the least effective in activating oocytes. Thus, the rate of mouse oocyte activation following human sperm injection is greatly influenced by the state of the sperm plasma membrane during injection. When mouse spermatozoa were injected into mouse oocytes, the rates of oocyte activation and sperm head decondensation within activated oocytes were the same irrespective of the type of sperm treatment prior to injection. We witnessed that live human spermatozoa injected into moue oocytes often kept moving very actively within the ooplasm for more than 60 min, whereas motile mouse spermatozoa usually became immotile within 20 min after injection into the ooplasm. In 0.002% Triton X-100 solution, mouse spermatozoa are immobilised faster than human spermatozoa. These facts seem to suggest that human sperm plasma membranes are physically and biochemically more stable than those of mouse spermatozoa. Perhaps the physical and chemical properties of the sperm plasma membrane vary from species to species. For those species whose spermatozoa have ‘stable’ plasma membranes, prior removal or ‘damage’ of sperm plasma membranes would increase the success rate of ICSI.


Author(s):  
Kyungjun Uh ◽  
Alayna Hay ◽  
Paula Chen ◽  
Emily Reese ◽  
Kiho Lee

Abstract Oocyte activation occurs at the time of fertilization and is a series of cellular events initiated by intracellular Ca2+ increases. Consequently, oocytes are alleviated from their arrested state in meiotic metaphase II (MII), allowing for the completion of meiosis. Oocyte activation is also an essential step for somatic cell nuclear transfer (SCNT) and an important tool to overcome clinical infertility. Traditional artificial activation methods aim to mimic the intracellular Ca2+ changes which occur during fertilization. Recent studies emphasize the importance of cytoplasmic Zn2+ on oocyte maturation and the completion of meiosis, thus suggesting artificial oocyte activation approaches that are centered around the concentration of available Zn2+in oocytes. Depletion of intracellular Zn2+ in oocytes with heavy metal chelators leads to successful oocyte activation in the absence of cellular Ca2+ changes, indicating that successful oocyte activation does not always depends on intracellular Ca2+ increases. Current findings lead to new approaches to artificially activate mammalian oocytes by reducing available Zn2+ contents, and the approaches improve the outcome of oocyte activation when combined with existing Ca2+ based oocyte activation methods. Here, we review the important role of Ca2+ and Zn2+ in mammalian oocyte activation and development of novel oocyte activation approaches based on Zn2+ availability.


2005 ◽  
Vol 83 (4) ◽  
pp. 1197-1205 ◽  
Author(s):  
P NAVARRO ◽  
L LIU ◽  
J TRIMARCHI ◽  
R FERRIANI ◽  
D KEEFE

Sign in / Sign up

Export Citation Format

Share Document