Meiosis-associated calcium waves in ascidian oocytes are correlated with the position of the male centrosome

Zygote ◽  
2000 ◽  
Vol 8 (4) ◽  
pp. 285-293 ◽  
Author(s):  
Martin Wilding ◽  
Marcella Marino ◽  
Vincenzo Monfrecola ◽  
Brian Dale

We have used confocal microscopy to measure calcium waves and examine the distribution of tubulin in oocytes of the ascidian Ciona intestinalis during meiosis. We show that the fertilisation calcium wave in these oocytes originates in the vegetal pole. The sperm penetration site and female meiotic apparatus are found at opposite poles of the oocyte at fertilisation, confirming that C. intestinalis sperm enter in the vegetal pole of the oocyte. Following fertilisation, ascidian oocytes are characterised by repetitive calcium waves. Meiosis I-associated waves originate at the vegetal pole of the oocyte, and travel towards the animal pole. In contrast, the calcium waves during meiosis II initiate at the oocyte equator, and cross the oocyte cytoplasm perpendicular to the point of emission of the polar body. Immunolocalisation of tubulin during meiosis II reveals that the male centrosome is also located between animal and vegetal poles prior to initiation of the meiosis II-associated calcium waves, suggesting that the male centrosome influences the origin of these calcium transients. Ascidians are also characterised by an increase in sensitivity to intracellular calcium release after fertilisation. We show that this is not simply an effect of oocyte activation. The data strongly suggest a role for the male centrosome in controlling the mechanism and localisation of post-fertilisation intracellular calcium waves.

Development ◽  
1989 ◽  
Vol 105 (2) ◽  
pp. 237-249 ◽  
Author(s):  
C. Sardet ◽  
J. Speksnijder ◽  
S. Inoue ◽  
L. Jaffe

Using light microscopy techniques, we have studied the movements that follow fertilization in the denuded egg of the ascidian Phallusia mammillata. In particular, our observations show that, as a result of a series of movements described below, the mitochondria-rich subcortical myoplasm is split in two parts during the second phase of ooplasmic segregation. This offers a potential explanation for the origin of larval muscle cells from both posterior and anterior blastomeres. The first visible event at fertilization is a bulging at the animal pole of the egg, which is immediately followed by a wave of contraction, travelling towards the vegetal pole with a surface velocity of 1.4 microns s-1. This wave accompanies the first phase of ooplasmic segregation of the mitochondria-rich subcortical myoplasm. After this contraction wave has reached the vegetal pole after about 2 min, a transient cytoplasmic lobe remains there until 6 min after fertilization. Several new features of the morphogenetic movements were then observed: between the extrusion of the first and second polar body (at 5 and 24–29 min, respectively), a series of transient animal protrusions form at regular intervals. Each animal protrusion involves a flow of the centrally located cytoplasm in the animal direction. Shortly before the second polar body is extruded, a second transient vegetal lobe (‘the vegetal button’) forms, which, like the first, resembles a protostome polar lobe. Immediately after the second polar body is extruded, three events occur almost simultaneously: first, the sperm aster moves from the vegetal hemisphere to the equator. Second, the bulk of the vegetally located myoplasm moves with the sperm aster towards the future posterior pole, but interestingly about 20% remains behind at the anterior side of the embryo. This second phase of myoplasmic movement shows two distinct subphases: a first, oscillatory subphase with an average velocity of about 6 microns min-1, and a second steady subphase with a velocity of about 26 microns min-1. The myoplasm reaches its final position as the male pronucleus with its surrounding aster moves towards the centre of the egg. Third, the female pronucleus moves towards the centre of the egg to meet with the male pronucleus. Like the myoplasm, the migrations of both the sperm aster and the female pronucleus shows two subphases with distinctly different velocities. Finally, the pronuclear membranes dissolve, a small mitotic spindle is formed with very large asters, and at about 60–65 min after fertilization, the egg cleaves.


2019 ◽  
Vol 97 (5) ◽  
pp. 429-435 ◽  
Author(s):  
Ian C. Smith ◽  
Rene Vandenboom ◽  
A. Russell Tupling

The amount of calcium released from the sarcoplasmic reticulum in skeletal muscle rapidly declines during repeated twitch contractions. In this study, we test the hypothesis that caffeine can mitigate these contraction-induced declines in calcium release. Lumbrical muscles were isolated from male C57BL/6 mice and loaded with the calcium-sensitive indicator, AM-furaptra. Muscles were then stimulated at 8 Hz for 2.0 s in the presence or absence of 0.5 mM caffeine, at either 30 °C or 37 °C. The amplitude and area of the furaptra-based intracellular calcium transients and force produced during twitch contractions were calculated. For each of these measures, the values for twitch 16 relative to twitch 1 were higher in the presence of caffeine than in the absence of caffeine at both temperatures. We conclude that caffeine can attenuate contraction-induced diminutions of calcium release during repeated twitch contractions, thereby contributing to the inotropic effects of caffeine.


1996 ◽  
Vol 76 (4) ◽  
pp. 1027-1071 ◽  
Author(s):  
J. L. Sutko ◽  
J. A. Airey

Complexities in calcium signaling in eukaryotic cells require diversity in the proteins involved in generating these signals. In this review, we consider the ryanodine receptor (RyR) family of intracellular calcium release channels. This includes species, tissue, and cellular distributions of the RyRs and mechanisms of activation, deactivation, and inactivation of RyR calcium release events. In addition, as first observed in nonmammalian vertebrate skeletal muscles, it is now clear that more than one RyR isoform is frequently coexpressed within many cell types. How multiple ryanodine receptor release channels are used to generate intracellular calcium transients is unknown. Therefore, a primary focus of this review is why more than one RyR is required for this purpose, particularly in a tissue, such as vertebrate fast-twitch skeletal muscles, where a relatively simple and straightforward change in calcium would appear to be required to elicit contraction. Finally, the roles of the RyR isoforms and the calcium release events they mediate in the development of embryonic skeletal muscle are considered.


2019 ◽  
Vol 34 (8) ◽  
pp. 1494-1504 ◽  
Author(s):  
Marc Torra-Massana ◽  
David Cornet-Bartolomé ◽  
Montserrat Barragán ◽  
Mercè Durban ◽  
Anna Ferrer-Vaquer ◽  
...  

Abstract STUDY QUESTION Are phospholipase C zeta 1 (PLCZ1) mutations associated with fertilization failure (FF) after ICSI? SUMMARY ANSWER New mutations in the PLCZ1 sequence are associated with FFs after ICSI. WHAT IS KNOWN ALREADY FF occurs in 1–3% of ICSI cycles, mainly due to oocyte activation failure (OAF). The sperm PLCζ/PLCZ1 protein hydrolyzes phosphatidylinositol (4, 5)-bisphosphate in the oocyte, leading to intracellular calcium release and oocyte activation. To date, few PLCZ1 point mutations causing decreased protein levels or activity have been linked to FF. However, functional alterations of PLCζ/PLCZ1 in response to both described and novel mutations have not been investigated. STUDY DESIGN, SIZE, DURATION We performed a study including 37 patients presenting total or partial FF (fertilization rate (FR), ≤25%) after ICSI occurring between 2014 and 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS Patients were divided into two groups based on oocyte evaluation 19 h post ICSI: FF due to a defect in oocyte activation (OAF, n = 22) and FF due to other causes (‘no-OAF’, n = 15). Samples from 13 men with good fertilization (FR, >50%) were used as controls. PLCζ/PLCZ1 protein localization and levels in sperm were evaluated by immunofluorescence and western blot, respectively. Sanger sequencing on genomic DNA was used to identify PLCZ1 mutations in exonic regions. The effect of the mutations on protein functionality was predicted in silico using the MODICT algorithm. Functional assays were performed by cRNA injection of wild-type and mutated forms of PLCZ1 into human in vitro matured metaphase II oocytes, and fertilization outcomes (second polar body extrusion, pronucleus appearance) scored 19 h after injection. MAIN RESULTS AND THE ROLE OF CHANCE In the OAF group, 12 (54.6%) patients carried at least one mutation in the PLCZ1 coding sequence, one patient out of 15 (6.7%) in the no-OAF group (P < 0.05) and none of the 13 controls (P < 0.05). A total of six different mutations were identified. Five of them were single-nucleotide missense mutations: p.I120M, located at the end of the EF-hand domain; p.R197H, p.L224P and p.H233L, located at the X catalytic domain; and p.S500 L, located at the C2 domain. The sixth mutation, a frameshift variant (p.V326K fs*25), generates a truncated protein at the X-Y linker region. In silico analysis with MODICT predicted all the mutations except p.I120M to be potentially deleterious for PLCζ/PLCZ1 activity. After PLCZ1 cRNA injection, a significant decrease in the percentage of activated oocytes was observed for three mutations (p.R197H, p.H233L and p.V326K fs*25), indicating a deleterious effect on enzymatic activity. PLCZ1 protein localization and expression levels in sperm were similar across groups. FRs were restored (to >60%) in patients carrying PLCZ1 mutations (n = 10) after assisted oocyte activation (AOA), with seven patients achieving pregnancy and live birth. LIMITATIONS, REASONS FOR CAUTION Caution should be exerted when comparing the cRNA injection results with fertilization outcomes after ICSI, especially in patients presenting mutations in heterozygosis. WIDER IMPLICATIONS OF THE FINDINGS PLCZ1 mutations were found in high frequency in patients presenting OAF. Functional analysis of three mutations in human oocytes confirms alteration of PLCζ/PLCZ1 activity and their likely involvement in impaired oocyte activation. Our results suggest that PLCZ1 gene sequencing could be useful as a tool for the diagnosis and counseling of couples presenting FF after ICSI due to OAF. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by intramural funding of Clínica EUGIN, by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia (GENCAT 2015 DI 049 to M. T.-M. and GENCAT 2015 DI 048 to D. C.-B.) and by the Torres Quevedo Program from the Spanish Ministry of Economy and Competitiveness to A. F.-V. No competing interest declared.


1995 ◽  
Vol 108 (1) ◽  
pp. 143-151 ◽  
Author(s):  
N.J. Winston ◽  
O. McGuinness ◽  
M.H. Johnson ◽  
B. Maro

To study the role of the metaphase spindle during the period of oocyte activation, mouse oocytes were fertilised or activated parthenogenetically in the presence or absence of the microtubule inhibitor nocodazole. In both cases, nocodazole caused the disappearance of the spindle and prevented the passage of the oocytes into interphase. However, the calcium spiking responses of the oocytes were not affected by nocodazole, being repetitive after fertilisation and a single spike after activation. If, after their activation or fertilisation in nocodazole, oocytes were later removed from the drug, only those that had been fertilised progressed into interphase. This progress was associated with continuing calcium spiking. Moreover, both the spiking and the progress to interphase could be blocked or reduced in incidence by removal of external calcium or addition of 5,5′-dimethyl BAPTA-AM. Oocytes that had been activated by ethanol in the presence of nocodazole and then removed from it, to allow re-formation of the spindle, only progressed into interphase if given a second exposure to ethanol, thereby eliciting a second calcium transient. These results show that exit from meiotic M-phase requires the simultaneous presence of a fully intact spindle during the release of calcium and that those factors leading to the degradation of cyclin B are only activated transiently. Since cyclin is being degraded continuously in the metaphase-II-arrested mouse oocyte and since this degradation is microtubule-dependent, these data suggest that the superimposition of a high concentration of intracellular calcium is required to tilt the equilibrium further in favour of cyclin degradation if exit from M-phase is to occur.


2004 ◽  
Vol 16 (9) ◽  
pp. 234
Author(s):  
K. Gardner ◽  
M. Pantaleon ◽  
P. L. Kaye

Despite their inability to utilise glucose for energy prior to compaction (E3), mouse embryos have a requirement for at least a brief glucose exposure to permit normal development. In the absence of this glucose pulse in vitro, we and others have found that embryos cleave to form morulae but fail to form blastocysts and subsequently degenerate. These embryos do not develop the capacity to utilise glucose preferentially and are unable to adapt to their nutrient environment and utilise alternate substrates (1). This inability to utilise glucose is due to failure to express GLUT3 at compaction (2). Brief glucose exposure prior to the 8-cell stage is sufficient to permit the embryo to undergo compaction, express GLUT3 and ultimately form a blastocyst, suggesting that glucose induces metabolic differentiation of the developing embryo. In this study we have explored the role of intracellular calcium in response to glucose given its central role in pancreatic glucose induced signalling events. Zygotes were cultured in the presence and absence of glucose and treated with either calcium mobilising agents, ethanol or ionomycin at 54�h post hCG or with the intracellular calcium chelator BAPTA-AM. Embryos were fixed and assayed for GLUT3 expression individually at 96�h post hCG using confocal immunofluorescence. Release of intracellular calcium by either ethanol or ionomycin, activated GLUT3 expression in a glucose like manner (P�<�0.01) suggesting that calcium transients may be involved in glucose sensing. Moreover, buffering of calcium with the calcium chelator BAPTA-AM interfered with the ability of glucose to activate GLUT3 expression (P�<�0.05), suggesting that glucose exposure does result in calcium transients that affect GLUT3 expression. It is unclear whether these calcium transients occur as a result of influx of extracellular calcium via voltage-gated ion channels or the release of calcium from intracellular stores via inositol triphosphate-gated calcium release channels in the endoplasmic reticulum. (1) Martin and Leese (1995) Mol. Reprod. Dev. 40, 436–443. (2) Pantaleon et al. (2001) Proc 32nd Annual SRB Conference, Gold Coast, Qld. A42.


2016 ◽  
Vol 27 (21) ◽  
pp. 3273-3283 ◽  
Author(s):  
Ruizhen Li ◽  
Julie Leblanc ◽  
Kevin He ◽  
X. Johné Liu

Intracellular calcium transients are a universal phenomenon at fertilization and are required for egg activation, but the exact role of Ca2+ in second-polar-body emission remains unknown. On the other hand, similar calcium transients have not been demonstrated during oocyte maturation, and yet, manipulating intracellular calcium levels interferes with first-polar-body emission in mice and frogs. To determine the precise role of calcium signaling in polar body formation, we used live-cell imaging coupled with temporally precise intracellular calcium buffering. We found that BAPTA-based calcium chelators cause immediate depolymerization of spindle microtubules in meiosis I and meiosis II. Surprisingly, EGTA at similar or higher intracellular concentrations had no effect on spindle function or polar body emission. Using two calcium probes containing permutated GFP and the calcium sensor calmodulin (Lck-GCaMP3 and GCaMP3), we demonstrated enrichment of the probes at the spindle but failed to detect calcium increase during oocyte maturation at the spindle or elsewhere. Finally, endogenous calmodulin was found to colocalize with spindle microtubules throughout all stages of meiosis. Our results—most important, the different sensitivities of the spindle to BAPTA and EGTA—suggest that meiotic spindle function in frog oocytes requires highly localized, or nanodomain, calcium signaling.


2004 ◽  
Vol 286 (2) ◽  
pp. H648-H656 ◽  
Author(s):  
Rodolphe P. Katra ◽  
Etienne Pruvot ◽  
Kenneth R. Laurita

Regional heterogeneities of ventricular repolarizing currents and their role in arrhythmogenesis have received much attention; however, relatively little is known regarding heterogeneities of intracellular calcium handling. Because repolarization properties and contractile function are heterogeneous from base to apex of the intact heart, we hypothesize that calcium handling is also heterogeneous from base to apex. To test this hypothesis, we developed a novel ratiometric optical mapping system capable of measuring calcium fluorescence of indo-1 at two separate wavelengths from 256 sites simultaneously. With the use of intact Langendorff-perfused guinea pig hearts, ratiometric calcium transients were recorded under normal conditions and during administration of known inotropic agents. Ratiometric calcium transients were insensitive to changes in excitation light intensity and fluorescence over time. Under control conditions, calcium transient amplitude near the apex was significantly larger (60%, P < 0.01) compared with the base. In contrast, calcium transient duration was significantly longer (7.5%, P < 0.03) near the base compared with the apex. During isoproterenol (0.05 μM) and verapamil (2.5 μM) administration, ratiometric calcium transients accurately reflected changes in contractile function, and, the direction of base-to-apex heterogeneities remained unchanged compared with control. Ratiometric optical mapping techniques can be used to accurately quantify heterogeneities of calcium handling in the intact heart. Significant heterogeneities of calcium release and sequestration exist from base to apex of the intact heart. These heterogeneities are consistent with base-to-apex heterogeneities of contraction observed in the intact heart and may play a role in arrhythmogenesis under abnormal conditions.


Sign in / Sign up

Export Citation Format

Share Document