Alterations of the Cytoskeletal Organization in Tumor Cell Lines by a Cardiotonic Drug, Vesnarinone, through Protein Tyrosine Phosphorylation

1995 ◽  
Vol 219 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Yoshiyuki Yoshinaka ◽  
Iyoko Katoh ◽  
Hiroyuki Kyushiki ◽  
Yoko Sakamoto
1995 ◽  
Vol 15 (7) ◽  
pp. 3805-3812 ◽  
Author(s):  
B Matoskova ◽  
W T Wong ◽  
A E Salcini ◽  
P G Pelicci ◽  
P P Di Fiore

eps8, a recently identified tyrosine kinase substrate, has been shown to augment epidermal growth factor (EGF) responsiveness, implicating it in EGF receptor (EGFR)-mediated mitogenic signaling. We investigated the status of eps8 phosphorylation in normal and transformed cells and the role of eps8 in transformation. In NIH 3T3 cells overexpressing EGFR (NIH-EGFR), eps8 becomes rapidly phosphorylated upon EGF stimulation. At receptor-saturating doses of EGF, approximately 30% of the eps8 pool is tyrosine phosphorylated. Under physiological conditions of activation (i.e., at low receptor occupancy), corresponding to the 50% effective dose of EGF for mitogenesis, approximately 3 to 4% of the eps8 contains phosphotyrosine. In human tumor cell lines, we detected constitutive tyrosine phosphorylation of eps8, with a stoichiometry (approximately 5%) similar to that associated with potent mitogenic response in NIH-EGFR cells. Overexpression of eps8 was able to transform NIH 3T3 cells under limiting conditions of activation of the EGFR pathway. Concomitant tyrosine phosphorylation of eps8 and shc, but not of rasGAP, phospholipase C-gamma, and eps15, was frequently detected in tumor cells. This suggested that eps8 and shc might be part of a pathway which is preferentially selected in some tumors. Cooperation between these two transducers was further indicated by the finding of their in vivo association. This association was, at least in part, dependent on recognition of shc by the SH3 domain of eps8. Our results indicate that eps8 is physiologically part of the EGFR-activated signaling and that its alterations can contribute to the malignant phenotype.


Neurosurgery ◽  
1996 ◽  
Vol 38 (1) ◽  
pp. 108-114 ◽  
Author(s):  
Paschal A. Oude Weernink ◽  
Edith Verheul ◽  
Ellen Kerkhof ◽  
Cornelis W.M. van Veelen ◽  
Gert Rijksen

2007 ◽  
Vol 18 (7) ◽  
pp. 2455-2462 ◽  
Author(s):  
Anthony J. Scarzello ◽  
Ana L. Romero-Weaver ◽  
Stephen G. Maher ◽  
Timothy D. Veenstra ◽  
Ming Zhou ◽  
...  

Type I interferons (IFN-α/β) induce apoptosis in certain tumor cell lines but not others. Here we describe a mutation in STAT2 that confers an apoptotic effect in tumor cells in response to type I IFNs. This mutation was introduced in a conserved motif, PYTK, located in the STAT SH2 domain, which is shared by STAT1, STAT2, and STAT3. To test whether the tyrosine in this motif might be phosphorylated and affect signaling, Y631 of STAT2 was mutated to phenylalanine (Y631F). Although it was determined that Y631 was not phosphorylated, the Y631F mutation conferred sustained signaling and induction of IFN-stimulated genes. This prolonged IFN response was associated with sustained tyrosine phosphorylation of STAT1 and STAT2 and their mutual association as heterodimers, which resulted from resistance to dephosphorylation by the nuclear tyrosine phosphatase TcPTP. Finally, cells bearing the Y631F mutation in STAT2 underwent apoptosis after IFN-α stimulation compared with wild-type STAT2. Therefore, this mutation reveals that a prolonged response to IFN-α could account for one difference between tumor cell lines that undergo IFN-α–induced apoptosis compared with those that display an antiproliferative response but do not die.


Sign in / Sign up

Export Citation Format

Share Document