PD 98059 Prevents Establishment of the Spindle Assembly Checkpoint and Inhibits the G2-M Transition in Meiotic but Not Mitotic Cell Cycles inXenopus

1998 ◽  
Vol 241 (1) ◽  
pp. 12-22 ◽  
Author(s):  
Darren A.E Cross ◽  
Carl Smythe
2012 ◽  
Vol 23 (20) ◽  
pp. 3970-3981 ◽  
Author(s):  
Janet E. Holt ◽  
Simon I. R. Lane ◽  
Phoebe Jennings ◽  
Irene García-Higuera ◽  
Sergio Moreno ◽  
...  

FZR1 is an anaphase-promoting complex (APC) activator best known for its role in the mitotic cell cycle at M-phase exit, in G1, and in maintaining genome integrity. Previous studies also established that it prevents meiotic resumption, equivalent to the G2/M transition. Here we report that mouse oocytes lacking FZR1 undergo passage through meiosis I that is accelerated by ∼1 h, and this is due to an earlier onset of spindle assembly checkpoint (SAC) satisfaction and APCCDC20 activity. However, loss of FZR1 did not compromise SAC functionality; instead, earlier SAC satisfaction was achieved because the bipolar meiotic spindle was assembled more quickly in the absence of FZR1. This novel regulation of spindle assembly by FZR1 led to premature bivalent attachment to microtubules and loss of kinetochore-bound MAD2. Bivalents, however, were observed to congress poorly, leading to nondisjunction rates of 25%. We conclude that in mouse oocytes FZR1 controls the timing of assembly of the bipolar spindle and in so doing the timing of SAC satisfaction and APCCDC20 activity. This study implicates FZR1 as a major regulator of prometaphase whose activity helps to prevent chromosome nondisjunction.


Reproduction ◽  
2010 ◽  
Vol 140 (4) ◽  
pp. 521-530 ◽  
Author(s):  
Simon I R Lane ◽  
Heng-Yu Chang ◽  
Phoebe C Jennings ◽  
Keith T Jones

Previous studies have established that when maturing mouse oocytes are continuously incubated with the Aurora inhibitor ZM447439, meiotic maturation is blocked. In this study, we observe that by altering the time of addition of the inhibitor, oocyte maturation can actually be accelerated by 1 h as measured by the timing of polar body extrusion. ZM447439 also had the ability to overcome a spindle assembly checkpoint (SAC) arrest caused by nocodazole and so rescue polar body extrusion. Consistent with the ability of the SAC to inhibit cyclin B1 degradation by blocking activation of the anaphase-promoting complex, we could also observe a rescue in cyclin B1 degradation when ZM447439 was added to nocodazole-treated oocytes. The acceleration of the first meiotic division by ZM447439, which has not been achieved previously, and its effects on the SAC are all consistent with the proposed mitotic role of Aurora B in activating the SAC. We hypothesize that Aurora kinase activity controls the SAC in meiosis I, despite differences to the mitotic cell cycle division in spindle architecture brought about by the meiotic mono-orientation of sister kinetochores.


Sign in / Sign up

Export Citation Format

Share Document