Circumplanetary Dust Dynamics: Effects of Solar Gravity, Radiation Pressure, Planetary Oblateness, and Electromagnetism

Icarus ◽  
1996 ◽  
Vol 123 (2) ◽  
pp. 503-523 ◽  
Author(s):  
Douglas P. Hamilton ◽  
Alexander V. Krivov
2006 ◽  
Vol 2 (S236) ◽  
pp. 177-190
Author(s):  
D.J. Scheeres

AbstractThe dynamics of binary Near-Earth objects (NEO) are discussed and a simple model for the study of their dynamics is introduced. Main results on the motion and stability of binary asteroids are reviewed. The effect of perturbations external to the binary system, including solar gravity, solar radiation pressure, and planetary gravity, are considered.


2017 ◽  
Vol 469 (1) ◽  
pp. 630-638 ◽  
Author(s):  
V. V. Akimkin ◽  
M. S. Kirsanova ◽  
Ya. N. Pavlyuchenkov ◽  
D. S. Wiebe

Abstract In this paper, we extend the study initiated in Paper I by modelling grain ensemble evolution in a dynamical model of an expanding H ii region and checking the effects of momentum transfer from dust to gas. The radiation pressure on the dust, the dust drift and the lug on the gas by the dust are all important processes that should be considered simultaneously to describe the dynamics of H ii regions. By accounting for the momentum transfer from the dust to the gas, the expansion time of the H ii region is notably reduced (for our model of RCW 120, the time to reach the observed radius of the H ii region is reduced by a factor of 1.5). Under the common approximation of frozen dust, where there is no relative drift between the dust and gas, the radiation pressure from the ionizing star drives the formation of the very deep gas cavity near the star. Such a cavity is much less pronounced when the dust drift is taken into account. The dust drift leads to the two-peak morphology of the dust density distribution and significantly reduces the dust-to-gas ratio in the ionized region (by a factor of 2 to 10). The dust-to-gas ratio is larger for higher temperatures of the ionizing star since the dust grains have a larger electric charge and are more strongly coupled to the gas.


2020 ◽  
Vol 500 (1) ◽  
pp. 506-519
Author(s):  
Dejan Vinković ◽  
Miljenko Čemeljić

ABSTRACT We explore dust flow in the hottest parts of protoplanetary discs using the forces of gravity, gas drag, and radiation pressure. Our main focus is on the optically thin regions of dusty disc, where the dust is exposed to the most extreme heating conditions and dynamical perturbations: the surface of optically thick disc and the inner dust sublimation zone. We utilize results from two numerically strenuous fields of research. The first is the quasi-stationary solutions on gas velocity and density distributions from mangetohydrodynamical (MHD) simulations of accretion discs. This is critical for implementing a more realistic gas drag impact on dust movements. The second is the optical depth structure from a high-resolution dust radiation transfer. This step is critical for a better understanding of dust distribution within the disc. We describe a numerical method that incorporates these solutions into the dust dynamics equations. We use this to integrate dust trajectories under different disc wind models and show how grains end up trapped in flows that range from simple accretion on to the star to outflows into outer disc regions. We demonstrate how the radiation pressure force plays one of the key roles in this process and cannot be ignored. It erodes the dusty disc surface, reduces its height, resists dust accretion on to the star, and helps the disc wind in pushing grains outwards. The changes in grain size and porosity significantly affect the results, with smaller and porous grains being influenced more strongly by the disc wind and radiation pressure.


1996 ◽  
Vol 150 ◽  
pp. 325-328
Author(s):  
K. Grogan ◽  
S.F Dermott ◽  
B.Å.S. Gustafson ◽  
S. Jayaraman ◽  
Y.L. Xu ◽  
...  

AbstractImpact data from the ULYSSES dust detector at 5 AU from the Sun have been interpreted as a flux of sub-micron interstellar dust particles (Grün et al, 1994) arriving from 252° ecliptic longitude and 2.5° ecliptic latitude. Following the motions of these particles under the influence of solar gravity, radiation pressure and electromagnetic forces, we present results from the modeling of the thermal emission from the resultant particle cloud, and conclude that the chances for the detection of such an interstellar signature in the COBE data are marginal at best.


Author(s):  
Rikushi KATO ◽  
Masanori MATSUSHITA ◽  
Hideyuki TAKAHASHI ◽  
Osamu MORI ◽  
Nobukatsu OKUIZUMI ◽  
...  

2021 ◽  
Vol 12 (5) ◽  
pp. 101180
Author(s):  
Yue Li ◽  
Yougui Song ◽  
Dimitris G. Kaskaoutis ◽  
Jinbo Zan ◽  
Rustam Orozbaev ◽  
...  

2006 ◽  
Vol 128 (6) ◽  
pp. 830-836 ◽  
Author(s):  
Yong-Ping Liu ◽  
Chuan Li ◽  
Kuo-Kang Liu ◽  
Alvin C. K. Lai

In this paper, the mechanical properties of erythrocytes were studied numerically based upon the mechanical model originally developed by Pamplona and Calladine (ASME J. Biomech. Eng., 115, p. 149, 1993) for liposomes. The case under study is the erythrocyte stretched by a pair of laser beams in opposite directions within buffer solutions. The study aims to elucidate the effect of radiation pressure from the optical laser because up to now little is known about its influence on the cell deformation. Following an earlier study by Guck et al. (Phys. Rev. Lett., 84, p. 5451, 2000; Biophys. J., 81, p. 767, 2001), the empirical results of the radiation pressure were introduced and imposed on the cell surface to simulate the real experimental situation. In addition, an algorithm is specially designed to implement the simulation. For better understanding of the radiation pressure on the cell deformation, a large number of simulations were conducted for different properties of cell membrane. Results are first discussed parametrically and then evaluated by comparing with the experimental data reported by Guck et al. An optimization approach through minimizing the errors between experimental and numerical data is used to determine the optimal values of membrane properties. The results showed that an average shear stiffness around 4.611×10-6Nm−1, when the nondimensional ratio of shear modulus to bending modulus ranges from 10 to 300. These values are in a good agreement with those reported in literature.


1991 ◽  
Vol 7 (Supple) ◽  
pp. 679-681
Author(s):  
TOSHIYUKI YAMAMOTO ◽  
TOHRU FUJII ◽  
TOMOKO MATSUI ◽  
TSUGUO SAWADA

Sign in / Sign up

Export Citation Format

Share Document