Amelioration of soil fertility by woody perennials in cropping fields: evaluation of three tree species in the semi-arid zone of Nigeria

1996 ◽  
Vol 33 (4) ◽  
pp. 473-482 ◽  
Author(s):  
I.A. Jaiyeoba
2020 ◽  
Author(s):  
Chun Han ◽  
Yongjing Liu ◽  
Cankun Zhang ◽  
Yage Li ◽  
Tairan Zhou ◽  
...  

Abstract Background: Large-scale afforestation can significantly change the ground cover and soil physicochemical properties, especially the soil fertility maintenance and water conservation functions of artificial forests are very important in semi-arid mountain ecosystems. However, how different tree growth affect soil nutrient and soil physicochemical properties following afforestation and which is the best plantation tree species for improving soil fertility and water conservation functions remain largely unknown. Methods: This study investigated the soil nutrient contents of three plantations with different tree species (Larix principis-rupprechtii, Picea crassifolia, Pinus tabuliformis), soils and plant-soil feedbacks, as well as the interaction between soil physicochemical properties. Results: The results revealed that the leaf and litter layer strongly influence soil nutrient availability through biogeochemical processes: P. tabuliformis has higher organic carbon, ratio of organic carbon to total nitrogen (C:N) and organic carbon to total phosphorus (C:P) in the leaves and litter layer than L. principis-rupprechtii or P. crassifolia, suggesting that higher C:N and C:P hinder litter decomposition. As a result, the L. principis-rupprechtii and P. crassifolia plantation forests significantly improve soil nutrients and clay components than the P. tabuliformis plantation forest. Furthermore, the L. principis-rupprechtii and P. crassifolia plantation forests significantly improved the soil capacity, soil total porosity, and capillary porosity, decreased soil bulk density, and enhanced water storage capacity than the P. tabuliformis plantation forest. In conclusion, the results of this study showed that the strong link between plants and soil is tightly coupled to C:N and C:P, and there had a close correlation between soil particle size distribution and soil physicochemical properties. Conclusions: Therefore, our results recommend planting the L. principis-rupprechtii and P. crassifolia as the preferred tree species to enhance the soil fertility and water conservation functions, especially in semi-arid regions mountain forest ecosystems.


2020 ◽  
Author(s):  
Chun Han ◽  
Yongjing Liu ◽  
Cankun Zhang ◽  
Yage Li ◽  
Tairan Zhou ◽  
...  

Abstract Background: Large-scale afforestation can significantly change ground cover and soil physicochemical properties, especially the soil fertility maintenance and water conservation function of artificial forest is very important in semi-arid mountain ecosystems. To better understand the effects of different tree growth on soil nutrient and soil physicochemical properties following afforestation to determine the best plantation tree species for improving soil fertility and water conservation functions. Methods: This study investigated the soil nutrient contents for three different tree species (Larix principis-rupprechtii, Picea crassifolia, Pinus tabuliformis), soils and plant-soil feedbacks, as well as the interaction between soil physicochemical properties. Results: The results revealed that the leaf and litter layer strongly influences soil nutrient availability through biogeochemical processes: P. tabuliformis has higher organic carbon, C:N and C:P in the leaves and litter layer than L. principis-rupprechtii or P. crassifolia, suggesting that higher C:N and C:P hinder litter decomposition. As a result, the L. principis-rupprechtii and P. crassifolia plantation forests significantly improve soil nutrients and clay component than P. tabuliformis plantation forest. Furthermore, the the L. principis-rupprechtii and P. crassifolia plantation forests significantly improved the soil capacity, soil total porosity and capillary porosity, decreased soil bulk density, and enhanced water storage capacity than P. tabuliformis plantation forest. In conclusion, the results of this study show that the strong link between plants and soil is tightly coupled to C:N and C:P, and there had strong correlation between soil particle size distribution and soil physicochemical properties. Conclusions: Therefore, our results recommend planting the L. principis-rupprechtii and P. crassifolia as the preferred tree species to enhance the soil fertility and water conservation functions, especially in semi-arid regions mountain forest ecosystems.


2020 ◽  
Author(s):  
Chun Han ◽  
Yongjing Liu ◽  
Cankun Zhang ◽  
Yage Li ◽  
Tairan Zhou ◽  
...  

Abstract Background: Large-scale afforestation can significantly change the ground cover and soil physicochemical properties, especially the soil fertility maintenance and water conservation functions of artificial forests are very important in semi-arid mountain ecosystems. However, how different tree growth affect soil nutrient and soil physicochemical properties following afforestation and which is the best plantation tree species for improving soil fertility and water conservation functions remain largely unknown. Methods: This study investigated the soil nutrient contents of three plantations with different tree species (Larix principis-rupprechtii, Picea crassifolia, Pinus tabuliformis), soils and plant-soil feedbacks, as well as the interaction between soil physicochemical properties. Results: The results revealed that the leaf and litter layer strongly influence soil nutrient availability through biogeochemical processes: P. tabuliformis has higher organic carbon, ratio of organic carbon to total nitrogen (C:N) and organic carbon to total phosphorus (C:P) in the leaves and litter layer than L. principis-rupprechtii or P. crassifolia, suggesting that higher C:N and C:P hinder litter decomposition. As a result, the L. principis-rupprechtii and P. crassifolia plantation forests significantly improve soil nutrients and clay components than the P. tabuliformis plantation forest. Furthermore, the L. principis-rupprechtii and P. crassifolia plantation forests significantly improved the soil capacity, soil total porosity, and capillary porosity, decreased soil bulk density, and enhanced water storage capacity than the P. tabuliformis plantation forest. In conclusion, the results of this study showed that the strong link between plants and soil is tightly coupled to C:N and C:P, and there had a close correlation between soil particle size distribution and soil physicochemical properties. Conclusions: Therefore, our results recommend planting the L. principis-rupprechtii and P. crassifolia as the preferred tree species to enhance the soil fertility and water conservation functions, especially in semi-arid regions mountain forest ecosystems.


The present study was carried out in three districts viz; Rewari, Sirsa and Hisar of Haryana state. A survey of 60 sampled farms was conducted to extract information pertaining to various expenses incurred in cultivation of castor and output attained as well as to ascertain the perception of farmers for various problems encountered in production and marketing of castor seed. The descriptive analysis was employed to draw valid inferences from the study. The results revealed that net profit accrued from cultivation of castor seed was ₹ 46331 ha -1 in the study area. The value of B: C ratio of castor cultivation was more than one and also higher as compared to prevalent cropping systems indicated that cultivation of castor seed is economical viable entity. However, production constraints like retention of F2 seed in the field over year, grain scattering, shortage of irrigation water, frost effect on crop yield and marketing constraints like absence of MSP, higher transportation cost sale of castor seed in distant markets, frequent fluctuation in market price, non-availability of processing units were observed.


2017 ◽  
Vol 10 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Muhammad Afzal Rizvi ◽  
Syed Abid Ali ◽  
Iqra Munir ◽  
Kousar Yasmeen ◽  
Rubina Abid ◽  
...  

Aim: Quinoa is a popular source of protein, minerals and alternative to traditional grains. The objective of this study is to introduce the Quinoa in the semi-arid zone of Sindh province of Pakistan. Method: A variety of NARC-9 from the agricultural Punjab province was cultivated and subjected to analyze the growth, morphological characters of the varieties obtained, saponin, protein and the elemental composition viz. Cd, Cu, Fe, K, Na, Pb, and Zn. Result: The result demonstrated the optimum growth and no disease were found in the experimental area. At least three major varieties of quinoa were obtained. Seed morphological data of these three quinoa cultivars were collected. The average saponin levels were quite reasonable. Overall proteins band pattern revealed very high polymorphism in quinoa cultivars and the results were also in good agreement with earlier studies. Conclusion: All quinoa cultivars of Madinat al-Hikmah showed high concentrations of albumin than globulin concentrations (i.e. 48-52% and 24-27%, respectively) as compared to control seeds from market that had similar concentrations of the two fractions i.e. 35.58% and 37.68%, respectively. Likewise, low concentrations of prolamin 14-16% and glutelin 11-12% compared to control seeds 13% rank our crop much better quality than the imported one in the market. The trend of elemental accumulation was followed as K >Na >Fe >Zn >Cu >Pb >Cd, while for comparison it was Na >K >Zn >Fe >Cu >Pb >Cd >Pb for wheat grown under similar conditions. Traditional grains together make a major contribution to the total nutritional element intake of the average Pakistani citizen through diet, not only because of large amounts consumed, but also in part by suitable levels of their proteins and elemental up take for good health. Thus the successful cultivation of quinoa in the semi-arid zone of Sindh will certainly prove beneficial.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1477
Author(s):  
Antonio Marín-Martínez ◽  
Alberto Sanz-Cobeña ◽  
Mª Angeles Bustamante ◽  
Enrique Agulló ◽  
Concepción Paredes

In semi-arid vineyard agroecosystems, highly vulnerable in the context of climate change, the soil organic matter (OM) content is crucial to the improvement of soil fertility and grape productivity. The impact of OM, from compost and animal manure, on soil properties (e.g., pH, oxidisable organic C, organic N, NH4+-N and NO3−-N), grape yield and direct greenhouse gas (GHG) emission in vineyards was assessed. For this purpose, two wine grape varieties were chosen and managed differently: with a rain-fed non-trellising vineyard of Monastrell, a drip-irrigated trellising vineyard of Monastrell and a drip-irrigated trellising vineyard of Cabernet Sauvignon. The studied fertiliser treatments were without organic amendments (C), sheep/goat manure (SGM) and distillery organic waste compost (DC). The SGM and DC treatments were applied at a rate of 4600 kg ha−1 (fresh weight, FW) and 5000 kg ha−1 FW, respectively. The use of organic amendments improved soil fertility and grape yield, especially in the drip-irrigated trellising vineyards. Increased CO2 emissions were coincident with higher grape yields and manure application (maximum CO2 emissions = 1518 mg C-CO2 m−2 d−1). In contrast, N2O emissions, mainly produced through nitrification, were decreased in the plots showing higher grape production (minimum N2O emissions = −0.090 mg N2O-N m−2 d−1). In all plots, the CH4 fluxes were negative during most of the experiment (−1.073−0.403 mg CH4-C m−2 d−1), indicating that these ecosystems can represent a significant sink for atmospheric CH4. According to our results, the optimal vineyard management, considering soil properties, yield and GHG mitigation together, was the use of compost in a drip-irrigated trellising vineyard with the grape variety Monastrell.


2021 ◽  
Vol 161 ◽  
pp. 106158
Author(s):  
Misagh Parhizkar ◽  
Mahmood Shabanpour ◽  
Isabel Miralles ◽  
Artemio Cerdà ◽  
Nobuaki Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document