Cation Binding Predictions of Surface Complexation Models: Effects of pH, Ionic Strength, Cation Loading, Surface Complex, and Model Fit

1997 ◽  
Vol 188 (2) ◽  
pp. 444-472 ◽  
Author(s):  
A.P. Robertson ◽  
J.O. Leckie
2019 ◽  
Vol 107 (7) ◽  
pp. 615-622
Author(s):  
Raphael Scholze ◽  
Samer Amayri ◽  
Tobias Reich

Abstract Results from batch type experiments were modeled using the 2 SPNE SC/CE model developed by Bradbury and Baeyens. This work focused on the applicability of this model to the sorption of Np(V) on Na-montmorillonite under high saline conditions (0.1–3.0 M NaCl) in the pH range of 2–10 and in the presence of dissolved CO2 (p(CO2) = 10−3.3 atm). Under ambient air conditions two additional surface complexation species had to be taken into account, which are ternary species involving one carbonate ligand (≡SONpO2(CO3)2−, ≡SONpO2(CO3)Na−). The gained set of complexation parameters was successfully tested over a wide range of Np(V) concentrations (10−4 to 10−12 M) under Ar atmosphere and ambient air condition.


Soil Research ◽  
1981 ◽  
Vol 19 (1) ◽  
pp. 93 ◽  
Author(s):  
GP Gillman

The cation exchange capacity of six surface soils from north Queensland and Hawaii has been measured over a range of pH values (4-6) and ionic strength values (0.003-0.05). The results show that for variable charge soils, modest changes in electrolyte ionic strength are as important in their effect on caton exchange capacity as are changes in pH values.


2016 ◽  
Vol 145 (18) ◽  
pp. 185101 ◽  
Author(s):  
Ronald W. Thompson ◽  
Ramil F. Latypov ◽  
Ying Wang ◽  
Aleksey Lomakin ◽  
Julie A. Meyer ◽  
...  

2006 ◽  
Vol 84 (11) ◽  
pp. 1668-1677 ◽  
Author(s):  
Jon K. Skei ◽  
Dag Dolmen

Larval Bufo bufo (L., 1758) and Triturus vulgaris (L., 1758) were exposed to soft water (0.5 mg·L–1 Ca2+) experimentally acidified to pH 3.9 to 5.9 and total aluminium concentrations of <10, 150, and 300 µg·L–1. Below pH 4.5 both species experienced increased mortality. The LC50 (168 h) for <10 and 150 µg·L–1 Al was pH 4.3 and 4.1 for B. bufo and 4.2 and 4.1 for T. vulgaris. However, Al3+ increased the survival of both species, which may be due to the contribution of Al3+ to the ionic strength. No B. bufo larvae died at pH >4.5, whereas T. vulgaris at higher Al concentrations suffered relatively high mortality at pH 5.1–5.9, where Al occurs mainly as Al(OH)2+ and Al(OH)2+. Unlike external gills (T. vulgaris), internal gills (B. bufo) have their own internal environment and are probably better protected against the presence of these toxic Al species in the water. These Al species thus seem to be toxic to T. vulgaris larvae but not to B. bufo. Chloride was seen to be important for survival in water of low ionic strength, since the survival of T. vulgaris larvae, particularly at low Al concentration, increased at pH levels down to pH 4.3 when the water was acidified with HCl.


2010 ◽  
Vol 46 (5) ◽  
pp. 531-535 ◽  
Author(s):  
Kazutoshi Saeki ◽  
Takashi Kunito ◽  
Masao Sakai

2019 ◽  
Vol 21 (1) ◽  
pp. 155-162 ◽  
Author(s):  
Ya-nan Zhang ◽  
Jianchen Zhao ◽  
Yangjian Zhou ◽  
Jiao Qu ◽  
Jingwen Chen ◽  
...  

Combined effects of pH, DOM, ionic strength, and specific halides on the photodegradation of representative antibiotics in estuarine waters were revealed.


Sign in / Sign up

Export Citation Format

Share Document