scholarly journals Triple Positive Solutions and Dependence on Higher Order Derivatives

1999 ◽  
Vol 237 (2) ◽  
pp. 710-720 ◽  
Author(s):  
John M. Davis ◽  
Paul W. Eloe ◽  
Johnny Henderson
1999 ◽  
Vol 6 (5) ◽  
pp. 415-420
Author(s):  
John M. Davis ◽  
Paul W. Eloe ◽  
Johnny Henderson

Abstract For the 𝑛th order nonlinear differential equation 𝑦(𝑛)(𝑡) = 𝑓(𝑦(𝑡)), 𝑡 ∈ [0, 1], satisfying the multipoint conjugate boundary conditions, 𝑦(𝑗)(𝑎𝑖) = 0, 1 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 ≤ 𝑛𝑖 – 1, 0 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑘 = 1, and , where 𝑓 : ℝ → [0, ∞) is continuous, growth condtions are imposed on 𝑓 which yield the existence of at least three solutions that belong to a cone.


2013 ◽  
Vol 2013 ◽  
pp. 1-28 ◽  
Author(s):  
Zeqing Liu ◽  
Ling Guan ◽  
Sunhong Lee ◽  
Shin Min Kang

This paper is concerned with the higher order nonlinear neutral delay differential equation[a(t)(x(t)+b(t)x(t-τ))(m)](n-m)+[h(t,x(h1(t)),…,x(hl(t)))](i)+f(t,x(f1(t)),…,x(fl(t)))=g(t),for allt≥t0. Using the Banach fixed point theorem, we establish the existence results of uncountably many positive solutions for the equation, construct Mann iterative sequences for approximating these positive solutions, and discuss error estimates between the approximate solutions and the positive solutions. Nine examples are included to dwell upon the importance and advantages of our results.


2019 ◽  
Vol 21 (02) ◽  
pp. 1850005 ◽  
Author(s):  
Ran Zhuo ◽  
Yan Li

We study Navier problems involving the higher-order fractional Laplacians. We first obtain nonexistence of positive solutions, known as the Liouville-type theorems, in the upper half-space [Formula: see text] by studying an equivalent integral form of the fractional equation. Then we show symmetry for positive solutions on [Formula: see text] through a delicate iteration between lower-order differential/pseudo-differential equations split from the higher-order equation.


Sign in / Sign up

Export Citation Format

Share Document