Bacterial Expression of Catalytically Active Fragments of the Multifunctional Enzyme Enniatin Synthetase

1994 ◽  
Vol 243 (1) ◽  
pp. 116-122 ◽  
Author(s):  
Angela Haese ◽  
Rembert Pieper ◽  
Tatjana von Ostrowski ◽  
Rainer Zocher
1997 ◽  
Vol 327 (2) ◽  
pp. 431-437 ◽  
Author(s):  
M. John JENCO ◽  
P. Kevin BECKER ◽  
J. Andrew MORRIS

We have studied the binding of two G-protein-regulated phospholipase C (PLC) enzymes, PLCs-β1 and -β2, to membrane surfaces using sucrose-loaded bilayer phospholipid vesicles of varying compositions. Neither enzyme binds appreciably to pure phosphatidylcholine vesicles at lipid concentrations up to 10-3 M. PLC-β1 and PLC-β2 bind vesicles composed of phosphatidylcholine, phosphatidylserine and phosphatidylethanolamine (molar ratio 1:1:1) with an approximate Kd of 10-5 M. Inclusion of 2% PtdIns(4,5)P2 in these vesicles had no effect on the affinity of this interaction. As reported by others, removal of the C-terminus of PLC-β1 and PLC-β2 produces catalytically active fragments. The affinity of these truncated proteins for phospholipid vesicles is dramatically reduced suggesting that this region of the proteins contains residues important for membrane binding. Inclusion of G-protein α- and βγ-subunit activators in the phospholipid vesicles does not increase the binding of PLC-β1 or PLC-β2, and the magnitude of G-protein-mediated PLC activation observed at low phospholipid concentrations (10-6 M) is comparable to that observed at concentrations at which the enzymes are predominantly membrane-bound (10-3 M). PLC-β1 and -β2 contain C2 domains but Ca2+ does not enhance binding to the vesicles. Our results indicate that binding of these enzymes to membranes involves the C-temini of the proteins and suggest that activation of these enzymes by G-proteins results from a regulated interaction between the membrane-bound proteins rather than G-protein-dependent recruitment of soluble enzymes to a substrate-containing phospholipid surface.


Xenobiotica ◽  
2004 ◽  
Vol 34 (1) ◽  
pp. 49-60 ◽  
Author(s):  
S. L. Boye ◽  
O. Kerdpin ◽  
D. J. Elliot ◽  
J. O. Miners ◽  
L. Kelly ◽  
...  

1981 ◽  
Vol 45 (01) ◽  
pp. 090-094 ◽  
Author(s):  
Katsuo Sueishi ◽  
Shigeru Nanno ◽  
Kenzo Tanaka

SummaryFibrinogen degradation products were investigated for leukocyte chemotactic activity and for enhancement of vascular permeability. Both activities increased progressively with plasmin digestion of fibrinogen. Active fragments were partially purified from 24 hr-plasmin digests. Molecular weights of the permeability increasing and chemotactic activity fractions were 25,000-15,000 and 25,000 respectively. Both fractions had much higher activities than the fragment X, Y, D or E. Electron microscopic observation of the small blood vessels in rabbit skin correlated increased permeability with the formation of characteristic gaps between adjoining endothelial cells and their contraction.These findings suggest that lower molecular weight degradation products of fibrinogen may be influential in contributing to granulocytic infiltration and enhanced permeability in lesions characterized by deposits of fibrin and/or fibrinogen.


2015 ◽  
Vol 60 (6) ◽  
pp. 546-552
Author(s):  
V.M. Gorshkov ◽  
◽  
V.V. Kuzmenko
Keyword(s):  

2007 ◽  
Vol 2 (1) ◽  
Author(s):  
A. Ros ◽  
C. Canals-Batlle ◽  
M.A. Lillo-Ródenas ◽  
E. Fuente ◽  
M. A. Montes-Morán ◽  
...  

This paper focuses on the valorisation of solid residues obtained from the thermal treatment of sewage sludge. In particular, sewage sludge samples were collected from two waste water treatment plants (WWTPs) with different sludge line basic operations. After drying, sludges were heated up to 700 °C in appropriate ovens under diluted air (gasification) and inert (pyrolysis) atmospheres. The solids obtained, as well as the dried (raw) sludges, were characterised to determine their textural properties and chemical composition, including the speciation of their inorganic fraction. All the materials under study were employed as adsorbents/catalysts in H2S removal experiments at room temperature. It was found that, depending on the particular sludge characteristics, outstanding results can be achieved both in terms of retention capacities and selectivity. Some of the solids outperform commercially available sorbents specially designed for gaseous emissions control. In these adsorbents/catalysts, H2S is selectively oxidised to elemental sulphur most likely due to the presence of inorganic, catalytically active species. The role of the carbon-enriched part on these solids is also remarked.


2019 ◽  
Vol 19 (22) ◽  
pp. 1952-1961 ◽  
Author(s):  
J.C. Sobrinho ◽  
A.F. Francisco ◽  
R. Simões-Silva ◽  
A.M. Kayano ◽  
J.J. Alfonso Ruiz Diaz ◽  
...  

Background: Several studies have aimed to identify molecules that inhibit the toxic actions of snake venom phospholipases A2 (PLA2s). Studies carried out with PLA2 inhibitors (PLIs) have been shown to be efficient in this assignment. Objective: This work aimed to analyze the interaction of peptides derived from Bothrops atrox PLIγ (atPLIγ) with a PLA2 and to evaluate the ability of these peptides to reduce phospholipase and myotoxic activities. Methods: Peptides were subjected to molecular docking with a homologous Lys49 PLA2 from B. atrox venom modeled by homology. Phospholipase activity neutralization assay was performed with BthTX-II and different ratios of the peptides. A catalytically active and an inactive PLA2 were purified from the B. atrox venom and used together in the in vitro myotoxic activity neutralization experiments with the peptides. Results: The peptides interacted with amino acids near the PLA2 hydrophobic channel and the loop that would be bound to calcium in Asp49 PLA2. They were able to reduce phospholipase activity and peptides DFCHNV and ATHEE reached the highest reduction levels, being these two peptides the best that also interacted in the in silico experiments. The peptides reduced the myotubes cell damage with a highlight for the DFCHNV peptide, which reduced by about 65%. It has been suggested that myotoxic activity reduction is related to the sites occupied in the PLA2 structure, which could corroborate the results observed in molecular docking. Conclusion: This study should contribute to the investigation of the potential of PLIs to inhibit the toxic effects of PLA2s.


Sign in / Sign up

Export Citation Format

Share Document