Stabilisation of α-helices by site-directed mutagenesis reveals the importance of secondary structure in the transition state for acylphosphatase folding

2000 ◽  
Vol 300 (3) ◽  
pp. 633-647 ◽  
Author(s):  
Niccolò Taddei ◽  
Fabrizio Chiti ◽  
Tania Fiaschi ◽  
Monica Bucciantini ◽  
Cristina Capanni ◽  
...  
2008 ◽  
Vol 389 (2) ◽  
pp. 163-167 ◽  
Author(s):  
Branka Salopek-Sondi ◽  
Bojana Vukelić ◽  
Jasminka Špoljarić ◽  
Šumski Šimaga ◽  
Dušica Vujaklija ◽  
...  

Abstract Human dipeptidyl peptidase III (DPP III) is a member of the metallopeptidase family M49 with an implied role in the pain-modulatory system and endogenous defense against oxidative stress. Here, we report the heterologous expression of human DPP III and the site-directed mutagenesis results which demonstrate a functional role for Tyr318 at the active site of this enzyme. The substitution of Tyr318 to Phe decreased k cat by two orders of magnitude without altering the binding affinity of substrate, or of a competitive hydroxamate inhibitor designed to interact with S1 and S2 subsites. The results indicate that the conserved tyrosine could be involved in transition state stabilization during the catalytic action of M49 peptidases.


2006 ◽  
Vol 395 (3) ◽  
pp. 509-515 ◽  
Author(s):  
Zhong-liang Zheng ◽  
Mao-qing Ye ◽  
Zhen-yu Zuo ◽  
Zhi-gang Liu ◽  
Keng-chang Tai ◽  
...  

Hydrogen bonds occurring in the catalytic triad (Asp32, His64 and Ser221) and the oxyanion hole (Asn155) are very important to the catalysis of peptide bond hydrolysis by serine proteases. For the subtilisin NK (nattokinase), a bacterial serine protease, construction and analysis of a three-dimensional structural model suggested that several hydrogen bonds formed by four residues function to stabilize the transition state of the hydrolysis reaction. These four residues are Ser33, Asp60, Ser62 and Thr220. In order to remove the effect of these hydrogen bonds, four mutants (Ser33→Ala33, Asp60→Ala60, Ser62→Ala62, and Thr220→Ala220) were constructed by site-directed mutagenesis. The results of enzyme kinetics indicated that removal of these hydrogen bonds increases the free-energy of the transition state (ΔΔGT). We concluded that these hydrogen bonds are more important for catalysis than for binding the substrate, because removal of these bonds mainly affects the kcat but not the Km values. A substrate, SUB1 (succinyl-Ala-Ala-Pro-Phe-p-nitroanilide), was used during enzyme kinetics experiments. In the present study we have also shown the results of FEP (free-energy perturbation) calculations with regard to the binding and catalysis reactions for these mutant subtilisins. The calculated difference in FEP also suggested that these four residues are more important for catalysis than binding of the substrate, and the simulated values compared well with the experimental values from enzyme kinetics. The results of MD (molecular dynamics) simulations further demonstrated that removal of these hydrogen bonds partially releases Asp32, His64 and Asn155 so that the stability of the transition state decreases. Another substrate, SUB2 (H-D-Val-Leu-Lys-p-nitroanilide), was used for FEP calculations and MD simulations.


Sign in / Sign up

Export Citation Format

Share Document