scholarly journals Sea surface temperature changes in the North Sea and their causes

1996 ◽  
Vol 53 (6) ◽  
pp. 887-898 ◽  
Author(s):  
G Becker
2017 ◽  
Vol 44 (9) ◽  
pp. 4296-4303 ◽  
Author(s):  
Joachim Fallmann ◽  
Huw Lewis ◽  
Juan M. Castillo ◽  
Alex Arnold ◽  
Steven Ramsdale

Author(s):  
S. H. Coombs ◽  
C. E. Mitchell

The distribution, abundance and seasonal occurrence of larvae of mackerel (Scomber scombrus L.) are described from routine Continuous Plankton Recorder (CPR) sampling around the British Isles over the period 1948–78, and from more intensive CPR sampling in the Celtic Sea in 1977. There were two main areas of larval concentration: in the North Sea and over and adjacent to the Celtic Plateau; subsidiary aggregations were observed to the northwest of Ireland and to the west of Norway. There were some similarities between the distribution of larvae around the British Isles and that of adult Calanus spp. In the North Sea there was a southerly shift of larval distribution over the period 1948–77; over a similar period the abundance of larvae increased to reach high numbers by the late 1950s and subsequently declined after the mid-6os. To the south-west of the British Isles numbers of larvae showed a long-term decline. The long-term trends of distribution and abundance are discussed in relation to concurrent biological and environmental change. The clearest relationship was found between the numbers of mackerel larvae in the North Sea and sea-surface temperature in the North Atlantic, which suggests a common causative agent for both sets of observations; also, there was a weak relationship with both spawning stock biomass and sea-surface temperature at the spawning areas. In the North Sea the seasonal occurrence of larvae was from May to August, the majority being taken in June and July; over the period 1948–77 the seasonal time of occurrence of highest numbers of larvae has remained relatively constant. In the Celtic Sea the seasonal occurrence of larvae was spread over a longer period, from March to August, with relatively high numbers from March to June; over the period 1950–78 the time of occurrence has been variable, possibly with a tendency towards later timing in more recent years.


1979 ◽  
Vol 11 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Hubert H. Lamb

Variations must take place in the ocean circulation when the general wind circulation varies. There are hints even within recent years that the variations in the ocean between Iceland and Scotland and Norway can be big: The area has been regarded as the main path of the warm, saline North Atlantic Drift water heading towards the Arctic; but, when the polar water occasionally intrudes from the north, sea-surface temperature is liable to fall by 3 to 5°C and presumably by more than this when, as in 1888, the ice advanced to near the Faeroe Islands. The long series of sea-surface temperature observations at that point, starting in 1867, and earlier observations covering the area in 1789, are studied. Various kinds of proxy data—notably the CLIMAP Atlantic ocean-bed core analysis results for the last Ice Age climax and cod fishery and sea-ice reports from the Little Ice Age in the 17th century AD —are then used to indicate the variability in this part of the ocean on longer time scales. The reconstruction of the situation between ad 1675 and 1705 resulting from this study suggests a probable mean departure of the sea surface temperature from modern values between the Faeroes and southeast Iceland amounting to about −5°C; and at the climax in 1695 the polar water seems to have spread all around Iceland, across the entire surface of the Norwegian Sea to Norway, and south to near Shetland. Support for this diagnosis is found in a considerable variety of reports of environmental conditions existing at the time in Scotland, south Norway and elsewhere. The enhanced thermal gradient between approximately latitudes 55 and 65°N during the Little Ice Age, which this result indicates, offers an explanation for the occurrence in that period of a number of windstorms which changed the coasts in various places and seem to have surpassed in intensity the worst experienced in the region in more recent times.


Sign in / Sign up

Export Citation Format

Share Document