stratiform cloud
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 12)

H-INDEX

20
(FIVE YEARS 2)

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1671
Author(s):  
Lei Wang ◽  
Yueqing Li ◽  
Xiangde Xu

This paper introduces the X-band weather radar dual-polarization parameters of isolated convective cell precipitation and meso/microscale snowfall on Mount Everest and presents the first precipitation observations based on dual-polarization weather radar in this area. Compared with the Chengdu Plain, Mount Everest experienced convective precipitation on smaller horizontal and vertical scales with a narrower Zdr probability density spectrum (uniformly distributed around approximately 0). The Zh profile on Mount Everest displayed two peaks, unlike that over the plains, and the precipitation at the strong convective core was denser. Furthermore, during winter snowfall on the northern slope of Mount Everest, when the boundary layer exhibited sufficient water vapor and dynamic uplift, due to the low boundary layer temperature (<0 °C), water vapor produced stratiform clouds in the middle and lower layers (approximately 1.5 km above ground level (AGL)). Water vapor condensation at 1.5–2.5 km AGL led to latent heat release, which increased the temperature of regional stratiform clouds with increasing height. Consequently, the temperature at the stratiform cloud top height (2.5 km AGL) unexpectedly exceeded 0 °C. Additionally, the −20 °C isotherm was at approximately 4 km AGL, indicating that the middle- and upper-layer atmospheric temperatures remained low. Therefore, thermal instability occurred between the stratiform cloud top height and the middle/upper atmosphere, forming convective motion. These findings confirm the occurrence of elevated winter snowfall convection above Mount Everest and may have certain reference value for retrieving raindrop size distributions, quantitatively estimating precipitation, and parameterizing cloud microphysical processes in numerical prediction models for the Qinghai-Tibetan Plateau.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2322
Author(s):  
Minsong Huang

Stratiform clouds with embedded convective cells is an important precipitation system. Precise knowledge of the cloud’s microphysical structure can be useful for the development of a numerical weather prediction model and precipitation enhancement. Airborne measurement is one of the important ways for determining the microphysical structure of clouds. However, cloud particle shattering during measurement poses a serious problem to the measured microphysical characterization of clouds. In order to study the different influences of the shattered ice particles on the standard cloud imaging probe (CIP) measurement in the stratiform cloud region and the convective cloud region, a time-variant threshold method to identify the shattered fragments is presented. After application of this algorithm, the shattered fragments were recognized and their impacts on the particle size distribution (PSD), particle number concentration and ice water content measurement were analyzed. It was found that the shattering effect on the PSD decreases with the increasing size of less than 400 μm, fluctuates between 400 μm and 1000 μm and slightly increases with the increasing size of larger than 1000 μm on average in a stratiform region and a convective region. However, the average ratio of PSD uncorrected to that corrected for shattering events using the presented algorithm in convective clouds is larger than that in the stratiform regions in the whole size, and nearly twice that in the size of less than 1000 μm. The measured number concentration can be overestimated by up to a factor of 3.9 on average in a stratiform region, while in a convective region, it is 7.7, nearly twice that of a stratiform region. The ice water content in a stratiform region can be overestimated by 29.5% on average, but by 60.7% in a convective region. These findings can be helpful for the cloud physics community to use the airborne CIP measurement data for numerical weather and climate models.


2021 ◽  
Author(s):  
Maja Tomicic ◽  
Serge Soula ◽  
Thomas Farges ◽  
Serge Prieur ◽  
Eric Defer

&lt;p&gt;This study is a multi-instrumental analysis of a ~20-hour duration northwestern Mediterranean storm on September 21, 2019 that produced 21 sprites recorded with a video camera, of which 19 (90 %) were dancing sprites. A dancing sprite is a phenomenon in which sequences of sprites appear in succession with time intervals of no more than a few hundred milliseconds. For the most part, the individual sprites are a consequence of discrete strokes from one extended lightning flash. In this case, we find that 87.5% of the sprite sequences were triggered by distinct positive cloud-to-ground (+CG) strokes. The time between successive sprite parent (SP)+CG strokes within the same dancing sprite was between 40 and 516 ms, and the distance ranged between 2 and 87 km. The storm size and vertical development were analyzed from the infrared radiometer onboard Meteosat Second Generation satellite and the lightning activity was documented with several lightning location systems (LLS): the French LF network (M&amp;#233;t&amp;#233;orage), the GLD360 network operated by Vaisala company, the VHF SAETTA Lightning Mapping Array (LMA) system located in Corsica. Additionally, the vertical electric field at the time of the dancing sprites was measured with a broadband ELF vertical dipole whip antenna ~700 km away from the storm. The SAETTA LMA allows to map the SP+CG flashes in their both full extent and temporal evolution, and to infer the charge structure of the parent storm. We show that the SP+CG flashes followed a common propagation: they originated from the convective and very electrically active regions of the storm, and then escaped and extended horizontally far (tens of km) into the stratiform cloud region. Most of the sprites were triggered by +CG strokes in the stratiform region often following flash development resembling cutoff of a long negative leader. Additionally, we present a detailed analysis of two dancing sprite events in which the SP+CGs triggered new bidirectional breakdown with fast moving leaders that extended into the stratiform cloud region and resulted in new SP+CG strokes. In both events, we find in both LLS and ELF vertical electric field records, that the last sprite sequence was triggered by three almost simultaneous +CG strokes.&lt;/p&gt;


2021 ◽  
Vol 21 (3) ◽  
pp. 2027-2051
Author(s):  
Maurin Zouzoua ◽  
Fabienne Lohou ◽  
Paul Assamoi ◽  
Marie Lothon ◽  
Véronique Yoboue ◽  
...  

Abstract. Within the framework of the DACCIWA (Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa) project and based on a field experiment conducted in June and July 2016, we analyze the daytime breakup of continental low-level stratiform clouds in southern West Africa. We use the observational data gathered during 22 precipitation-free occurrences at Savè, Benin. Our analysis, which starts from the stratiform cloud formation usually at night, focuses on the role played by the coupling between cloud and surface in the transition towards shallow convective clouds during daytime. It is based on several diagnostics, including the Richardson number and various cloud macrophysical properties. The distance between the cloud base height and lifting condensation level is used as a criterion of coupling. We also make an attempt to estimate the most predominant terms of the liquid water path budget in the early morning. When the nocturnal low-level stratiform cloud forms, it is decoupled from the surface except in one case. In the early morning, the cloud is found coupled with the surface in 9 cases and remains decoupled in the 13 other cases. The coupling, which occurs within the 4 h after cloud formation, is accompanied by cloud base lowering and near-neutral thermal stability in the subcloud layer. Further, at the initial stage of the transition, the stratiform cloud base is slightly cooler, wetter and more homogeneous in coupled cases. The moisture jump at the cloud top is usually found to be lower than 2 g kg−1 and the temperature jump within 1–5 K, which is significantly smaller than typical marine stratocumulus and explained by the monsoon flow environment in which the stratiform cloud develops over West Africa. No significant difference in liquid water path budget terms was found between coupled and decoupled cases. In agreement with previous numerical studies, we found that the stratiform cloud maintenance before sunrise results from the interplay between the predominant radiative cooling, entrainment and large-scale subsidence at its top. Three transition scenarios were observed depending on the state of coupling at the initial stage. In coupled cases, the low-level stratiform cloud remains coupled until its breakup. In five of the decoupled cases, the cloud couples with the surface as the lifting condensation level rises. In the eight remaining cases, the stratiform cloud remains hypothetically decoupled from the surface throughout its life cycle since the height of its base remains separated from the condensation level. In cases of coupling during the transition, the stratiform cloud base lifts with the growing convective boundary layer roughly between 06:30 and 08:00 UTC. The cloud deck breakup, occurring at 11:00 UTC or later, leads to the formation of shallow convective clouds. When the decoupling subsists, shallow cumulus clouds form below the stratiform cloud deck between 06:30 and 09:00 UTC. The breakup time in this scenario has a stronger variability and occurs before 11:00 UTC in most cases. Thus, we argue that the coupling with the surface during daytime hours has a crucial role in the low-level stratiform cloud maintenance and its transition towards shallow convective clouds.


2020 ◽  
Author(s):  
Maurin Zouzoua ◽  
Fabienne Lohou ◽  
Paul Assamoi ◽  
Marie Lothon ◽  
Véronique Yoboue ◽  
...  

Abstract. Within the framework of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud-Interactions over West Africa) project, and based on a field experiment conducted in June and July 2016, we analyse the daytime breakup of the continental low-level stratiform clouds in southern West Africa. We use the observational data gathered during twenty-two precipitation-free occurrences at Savè supersite, in Benin. Our analysis, which starts since the stratiform cloud formation usually at night, focuses on the role played by the coupling between the cloud and the surface in the transition towards shallow convective clouds. It is based on several diagnostics, including Richardson number and various cloud macrophysical properties. The distance between lifting condensation level and cloud base height is used as a criterion of coupling. We also make an attempt to estimate the most predominant terms of the liquid water path budget on early morning. When the nocturnal low-level stratiform cloud forms, it is decoupled from the surface, except in one case. On early morning, the cloud is found coupled with the surface in nine cases and is remained decoupled in the thirteen other cases. The coupling, which occurs within the four hours after the cloud formation, is accompanied with a cloud base lowering and near-neutral thermal stability in the subcloud layer. Further, at the initial stage of the transition, the stratiform cloud base is slightly cooler, wetter and more homogeneous in the coupled cases. The moisture jump at cloud top is found usually around 2 g kg−1, and the temperature jump within 1–5 K, which is significantly smaller than typical marine stratocumulus, and explained by the monsoon flow environment within which the stratiform cloud develops. No significant difference of liquid water path budget terms was found between the coupled and decoupled cases. In agreement with previous numerical studies, we found that the stratiform cloud maintenance before the sunrise results from the interplay between the predominant radiative cooling, and, the entrainment and large scale subsidence at its top. Three transition scenarios were observed, depending on the state of the coupling at the initial stage. In the coupled cases, the low-level stratiform cloud remains coupled until its break up. In five of the decoupled cases, the cloud couples with the surface as the LCL is rising. In the eight remaining cases, the stratiform cloud remains decoupled from the surface all along its life cycle. In case of coupling during the transition, the stratiform cloud base lifts with the growing convective boundary layer roughly between 06:30 and 08:00 UTC. The cloud deck breakup occurring at 11:00 UTC or later leads to the formation of shallow convective clouds. When the decoupling subsists, shallow cumulus clouds form below the stratiform cloud deck between 06:30 and 09:00 UTC. The breakup time in this scenario has a stronger variability, and occurs before 11:00 UTC in most of the cases. Thus we argue that the coupling with the surface during the daytime hours has a crucial role in the low-level stratiform cloud maintenance and in its transition towards shallow convective clouds.


2020 ◽  
Author(s):  
Inna Khomenko ◽  
Oleksii Hustenko

&lt;p&gt;Fog that limit visibility and low-level stratiform clouds represent a significant hazard to aviation especially during takeoff and landing, and also low-level flying of aircrafts, because accidents often occur in reduced visibility conditions and low clouds. Therefore, forecasting fog and low ceilings is one of the most important, but at the same time the most difficult issue, because both phenomena strongly depend on local conditions and unsteady in both time and space. So weather observations can be used for statistical dependencies of fog/&amp;#160;low-level stratiform cloud characteristics on numerical model outputs.&lt;/p&gt;&lt;p&gt;To study fog and low-level stratiform clouds event characteristics occurring at the airport of Odessa, Ukraine, half hourly observations in the period of 2010-2018 are used. Applying a statistical approach annual, seasonal and diurnal distribution of fog and low stratus and their frequency distribution associated with various meteorological parameters are obtained.&lt;/p&gt;&lt;p&gt;The monthly distributions of low-level stratiform clouds reveal maximum occurrence frequencies in November and January, and fog most frequently occurs in December. No significant diurnal cycle of stratiform cloud occurrence is discovered, as opposed to fog for which the highest frequency is observed in the hours before sunrise, while when the day sets in, frequencies are declining and increasing at night.&lt;/p&gt;&lt;p&gt;Fog and low-level stratiform clouds have the same distribution in duration and the mean event duration is 4.5&amp;#160;h while 55% of the events lasted 2 h or less. The most long-lived fog and stratiform clouds can last about 4 days during the December-January period.&lt;/p&gt;&lt;p&gt;Occurrence of fog and stratiform clouds as function of temperature and relative humidity reveals a close statistical relationship, especially for fog events. More than 33% of all fogs are observed at temperatures of 0&amp;#176;C to 6&amp;#176;C and 96-100% relative humidity, the most frequencies of low-level clouds (13%) occur in the same temperature interval, but at lower values of relative humidity (91-95%).&lt;/p&gt;&lt;p&gt;Regarding fog density 75% of the events have minimum visibility lower than 400 m, which indicates the severity of the problem, because, despite the season and type of fog, they are usually quite intense and dense.&lt;/p&gt;&lt;p&gt;In all seasons of the year, the highest frequency of low-level stratiform clouds is in interval of 3...4&amp;#160;m/s, excluding summer, when most often such cloud is registered at higher speeds. The wind directions associated with low-level stratiform clouds are, as a rule, northern and eastern ones, which meant that forming stratiform clouds is also related to cyclonic activity.&lt;/p&gt;&lt;p&gt;Fogs, on the contrary, most often in all seasons, except winter, are formed at calm, meaning that radiation fogs are the most common type in the Odessa airport. In winter fogs are most commonly associated with northern and easterly winds; in all other seasons the southern wind is the most frequent.&lt;/p&gt;&lt;p&gt;On this basis, a relationship between the weather conditions near the surface and occurrence of fog and low-level stratiform clouds can be found.&lt;/p&gt;


2019 ◽  
Vol 37 (1) ◽  
pp. 117-129
Author(s):  
Tuanjie Hou ◽  
Hengchi Lei ◽  
Zhaoxia Hu ◽  
Jiefan Yang ◽  
Xingyu Li

Sign in / Sign up

Export Citation Format

Share Document