Small Angle X-Ray Scattering and Electron Cryomicroscopy Study of Actin Filaments: Role of the Bound Nucleotide in the Structure of F-Actin

1994 ◽  
Vol 112 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Jean Lepault ◽  
Jean-Luc Ranck ◽  
Inge Erk ◽  
Marie-France Carlier
2002 ◽  
Vol 277 (51) ◽  
pp. 49755-49760 ◽  
Author(s):  
Robin S. Chan ◽  
Jessica B. Sakash ◽  
Christine P. Macol ◽  
Jay M. West ◽  
Hiro Tsuruta ◽  
...  

Homotropic cooperativity inEscherichia coliaspartate transcarbamoylase results from the substrate-induced transition from the T to the R state. These two alternate states are stabilized by a series of interdomain and intersubunit interactions. The salt link between Lys-143 of the regulatory chain and Asp-236 of the catalytic chain is only observed in the T state. When Asp-236 is replaced by alanine the resulting enzyme exhibits full activity, enhanced affinity for aspartate, no cooperativity, and no heterotropic interactions. These characteristics are consistent with an enzyme locked in the functional R state. Using small angle x-ray scattering, the structural consequences of the D236A mutant were characterized. The unliganded D236A holoenzyme appears to be in a new structural state that is neither T, R, nor a mixture of T and R states. The structure of the native D236A holoenzyme is similar to that previously reported for another mutant holoenzyme (E239Q) that also lacks intersubunit interactions. A hybrid version of aspartate transcarbamoylase in which one catalytic subunit was wild-type and the other had the D236A mutation was also investigated. The hybrid holoenzyme, with three of the six possible interactions involving Asp-236, exhibited homotropic cooperativity, and heterotropic interactions consistent with an enzyme with both T and R functional states. Small angle x-ray scattering analysis of the unligated hybrid indicated that the enzyme was in a new structural state more similar to the T than to the R state of the wild-type enzyme. These data suggest that three of the six intersubunit interactions involving D236A are sufficient to stabilize a T-like state of the enzyme and allow for an allosteric transition.


2014 ◽  
Vol 67 (12) ◽  
pp. 1786 ◽  
Author(s):  
Lachlan W. Casey ◽  
Alan E. Mark ◽  
Bostjan Kobe

The role of small-angle X-ray scattering (SAXS) in structural biology is now well established, and its usefulness in combination with macromolecular crystallography is clear. However, the highly averaged SAXS data present a significant risk of over-interpretation to the unwary practitioner, and it can be challenging to frame SAXS results in a manner that maximises the reliability of the conclusions drawn. In this review, a series of recent examples are used to illustrate both the challenges for interpretation and approaches through which these can be overcome.


Metallomics ◽  
2015 ◽  
Vol 7 (3) ◽  
pp. 536-543 ◽  
Author(s):  
Timothy M. Ryan ◽  
Nigel Kirby ◽  
Haydyn D. T. Mertens ◽  
Blaine Roberts ◽  
Kevin J. Barnham ◽  
...  

Research into causes of Alzheimer's disease and its treatment has produced a tantalising array of hypotheses about the role of transition metal dyshomeostasis, many of them on the interaction of these metals with the neurotoxic amyloid-β peptide (Aβ).


2017 ◽  
Vol 49 (12) ◽  
pp. 831-837 ◽  
Author(s):  
Toshiji Kanaya ◽  
Momoko Murakami ◽  
Tadahiko Maede ◽  
Hiroki Ogawa ◽  
Rintaro Inoue ◽  
...  

Author(s):  
Dmitry Morozov ◽  
Vladimir Mironov ◽  
Roman V. Moryachkov ◽  
Irina A. Shchugoreva ◽  
Polina V. Artyushenko ◽  
...  

2019 ◽  
Author(s):  
Christian Prehal ◽  
Aleksej Samojlov ◽  
Manfred Nachtnebel ◽  
Manfred Kriechbaum ◽  
Heinz Amenitsch ◽  
...  

<b>Here we use in situ small and wide angle X-ray scattering to elucidate unexpected mechanistic insights of the O2 reduction mechanism in Li-O2 batteries.<br></b>


Sign in / Sign up

Export Citation Format

Share Document