intersubunit interactions
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 13)

H-INDEX

26
(FIVE YEARS 3)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1621
Author(s):  
Margarida Q. Rodrigues ◽  
Paula M. Alves ◽  
António Roldão

In the last decade, the interest in ferritin-based vaccines has been increasing due to their safety and immunogenicity. Candidates against a wide range of pathogens are now on Phase I clinical trials namely for influenza, Epstein-Barr, and SARS-CoV-2 viruses. Manufacturing challenges related to particle heterogeneity, improper folding of fused antigens, and antigen interference with intersubunit interactions still need to be overcome. In addition, protocols need to be standardized so that the production bioprocess becomes reproducible, allowing ferritin-based therapeutics to become readily available. In this review, the building blocks that enable the formulation of ferritin-based vaccines at an experimental stage, including design, production, and purification are presented. Novel bioengineering strategies of functionalizing ferritin nanoparticles based on modular assembly, allowing the challenges associated with genetic fusion to be circumvented, are discussed. Distinct up/down-stream approaches to produce ferritin-based vaccines and their impact on production yield and vaccine efficacy are compared. Finally, ferritin nanoparticles currently used in vaccine development and clinical trials are summarized.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tomoko Yamaguchi ◽  
Fumiaki Makino ◽  
Tomoko Miyata ◽  
Tohru Minamino ◽  
Takayuki Kato ◽  
...  

AbstractThe basal body of the bacterial flagellum is a rotary motor that consists of several rings (C, MS and LP) and a rod. The LP ring acts as a bushing supporting the distal rod for its rapid and stable rotation without much friction. Here, we use electron cryomicroscopy to describe the LP ring structure around the rod, at 3.5 Å resolution, from Salmonella Typhimurium. The structure shows 26-fold rotational symmetry and intricate intersubunit interactions of each subunit with up to six partners, which explains the structural stability. The inner surface is charged both positively and negatively. Positive charges on the P ring (the part of the LP ring that is embedded within the peptidoglycan layer) presumably play important roles in its initial assembly around the rod with a negatively charged surface.


2021 ◽  
Author(s):  
Alena Kroupova ◽  
Fabian Ackle ◽  
Franziska M Boneberg ◽  
Alessia Chui ◽  
Stefan Weitzer ◽  
...  

RtcB enzymes are RNA ligases that play essential roles in tRNA splicing, unfolded protein response, and RNA repair. In metazoa, RtcB functions as part of a five-subunit tRNA ligase complex (tRNA-LC) along with Ddx1, Cgi-99, Fam98B and Ashwin. The human tRNA-LC or its individual subunits have been implicated in additional cellular processes including microRNA maturation, viral replication, DNA double-strand break repair and mRNA transport. Here we present a biochemical analysis of the intersubunit interactions within the human tRNA-LC along with crystal structures of the catalytic subunit RTCB and the N-terminal domain of CGI-99. We show that the core of the human tRNA-LC is assembled from RTCB and the C-terminal alpha-helical regions of DDX1, CGI-99, and FAM98B, all of which are required for complex integrity. The N-terminal domain of CGI-99 displays structural homology to calponin-homology domains, and CGI-99 and FAM98B associate via their N-terminal domains to form a stable subcomplex. The crystal structure of GMP-bound RTCB reveals divalent metal coordination geometry in the active site, providing insights into its catalytic mechanism. Collectively, these findings shed light on the molecular architecture and mechanism of the human tRNA ligase complex, and provide a structural framework for understanding its functions in cellular RNA metabolism.


2021 ◽  
Author(s):  
Jitender Mehla ◽  
George Liechti ◽  
Randy M Morgenstern ◽  
J. Harry Caufield ◽  
Ali Hosseinnia ◽  
...  

YhcB, an uncharacterized protein conserved across gamma-proteobacteria, is composed predominantly of a single Domain of Unknown Function (DUF 1043) with an N-terminal transmembrane alpha-helix. Here, we show that E. coli YhcB is a conditionally essential protein that interacts with the proteins of the cell divisome (e.g., FtsI, FtsQ) and elongasome (e.g., RodZ, RodA). We found 7 interactions of YhcB that are conserved in Yersinia pestis and/or Vibrio cholerae. Furthermore, we identified several point mutations that abolished interactions of YhcB with FtsI and RodZ. The YhcB knock-out strain does not grow at 45C and is hypersensitive to cell-wall acting antibiotics even in stationary phase. The deletion of yhcB leads to filamentation, abnormal FtsZ ring formation, and aberrant septa development. The 2.8 angstrom crystal structure for the cytosolic domain from Haemophilus ducreyi YhcB shows a unique tetrameric alpha-helical coiled-coil structure that combines parallel and anti-parallel coiled-coil intersubunit interactions. This structure is likely to organize interprotein oligomeric interactions on the inner surface of the cytoplasmic membrane, possibly involved in regulation of cell division and/or envelope biogenesis/integrity in proteobacteria. In summary, YhcB is a conserved and conditionally essential protein that is predicted to play a role in cell division and consequently or in addition affects envelope biogenesis.


2020 ◽  
Author(s):  
Tomoko Yamaguchi ◽  
Fumiaki Makino ◽  
Tomoko Miyata ◽  
Tohru Minamino ◽  
Takayuki Kato ◽  
...  

AbstractThe bacterial flagellum is a motility organelle, consisting of the basal body acting as a rotary motor, the filament as a helical propeller and the hook connecting these two as a universal joint1,2. The basal body contains three rings: the MS ring as the transmembrane core of the rotor; the C ring essential for torque generation and switching regulation; and the LP ring as a bushing supporting the distal rod for its rapid, stable rotation without much friction. The negatively charged surface of the distal rod suggested electrostatic repulsive force in supporting high-speed rotation of the rod as a drive shaft3, but the LP ring structure was needed to see the actual mechanisms of its bushing function and assembly against the repulsive force. Here we report the LP ring structure by electron cryomicroscopy at 3.5 Å resolution, showing 26-fold rotational symmetry and intricate intersubunit interactions of each subunit with up to six partners that explains the structural stability. The inner surface is charged both positively and negatively, and positive charges on the P ring presumably play important roles in its initial assembly around the rod in the peptidoglycan layer followed by the L ring assembly in the outer membrane.


2020 ◽  
Vol 212 (1) ◽  
pp. 107581 ◽  
Author(s):  
Fanny Risser ◽  
Sabrina Collin ◽  
Raphael Dos Santos-Morais ◽  
Arnaud Gruez ◽  
Benjamin Chagot ◽  
...  

2020 ◽  
Vol 6 (29) ◽  
pp. eaba8105 ◽  
Author(s):  
Kanae Demura ◽  
Tsukasa Kusakizako ◽  
Wataru Shihoya ◽  
Masahiro Hiraizumi ◽  
Kengo Nomura ◽  
...  

Calcium homeostasis modulator (CALHM) family proteins are Ca2+-regulated adenosine triphosphate (ATP)–release channels involved in neural functions including neurotransmission in gustation. Here, we present the cryo–electron microscopy (EM) structures of killifish CALHM1, human CALHM2, and Caenorhabditis elegans CLHM-1 at resolutions of 2.66, 3.4, and 3.6 Å, respectively. The CALHM1 octamer structure reveals that the N-terminal helix forms the constriction site at the channel pore in the open state and modulates the ATP conductance. The CALHM2 undecamer and CLHM-1 nonamer structures show the different oligomeric stoichiometries among CALHM homologs. We further report the cryo-EM structures of the chimeric construct, revealing that the intersubunit interactions at the transmembrane domain (TMD) and the TMD–intracellular domain linker define the oligomeric stoichiometry. These findings advance our understanding of the ATP conduction and oligomerization mechanisms of CALHM channels.


2020 ◽  
Vol 7 ◽  
Author(s):  
Olivier Bignucolo ◽  
Sabrina Vullo ◽  
Nicolas Ambrosio ◽  
Ivan Gautschi ◽  
Stephan Kellenberger

2020 ◽  
Author(s):  
De-Sheng Ker ◽  
Huw T. Jenkins ◽  
Sandra J. Greive ◽  
Alfred A. Antson

AbstractNipah virus is a highly pathogenic zoonotic RNA virus, causing fatal encephalitis in humans. Like other negative-strand RNA viruses including Ebola and measles, its genome is wrapped by the nucleocapsid (N) protein forming a helical assembly. Here we report the CryoEM structure of the Nipah nucleocapsid protein-RNA assembly, at near atomic resolution. The N protein wraps the RNA genome with a periodicity of six nucleotides per protomer, around the outer edge of the helical assembly, in common with other paramyxoviruses. This structure uncovers details of the nucleocapsid assembly, demonstrating the role of the N-terminal arm of the N protein in the formation of the helical assembly and revealing details of the sequence-independent coordination of RNA binding in the “3-bases-in, 3-bases-out” conformation. CryoEM analysis also reveals formation of clam-shaped assemblies of the N-protein, mediated by intersubunit interactions involving several N protein loop regions.


Blood ◽  
2020 ◽  
Vol 135 (2) ◽  
pp. 145-152
Author(s):  
Bojun Li ◽  
Hans P. Kohler ◽  
Verena Schroeder

Abstract Coagulation factor XIII (FXIII) is the main stabilizer of the fibrin clot. It circulates in plasma as a tetramer of two A-subunits and two B-subunits. Under physiological conditions, FXIII-A exists as a dimer (FXIII-A2). The interactions between the FXIII-A-subunits that stabilize the FXIII-A2 dimer are not fully understood. We therefore designed a systematic approach to identify amino acid residues crucial for the expression and stability of FXIII-A2. Based on the available FXIII-A2 crystal structure, we identified 12 amino acid residues forming intersubunit salt bridges and 21 amino acid residues forming hydrogen bonds between the two A-subunits. We chose 10 amino acid residues that form 5 particularly strong interactions, performed site-directed mutagenesis, and expressed the mutants in CHO cells. Disruption of these interactions by single mutation of Lys257, Lys113, Asp343, Glu401, or Asp404 abolished the expression of properly folded, soluble, and functional FXIII-A in CHO cells. On the contrary, mutation of Glu111, Arg100, or Asn112 had no significant effect on FXIII-A expression. Our results suggest that 4 intersubunit interactions (Arg11-Asp343, Lys113-Asp367, Lys257-Glu401, and Arg260-Asp404) are essential for the stability of FXIII-A2. Our findings are supported by reported mutations at Lys257, Arg260, and Asp404 found in patients with congenital FXIII-A deficiency.


Sign in / Sign up

Export Citation Format

Share Document