FREE VIBRATIONS OF A COMPLEX EULER-BERNOULLI BEAM

1996 ◽  
Vol 190 (5) ◽  
pp. 852-856 ◽  
Author(s):  
N. Popplewell ◽  
Daqing Chang
2003 ◽  
Vol 9 (11) ◽  
pp. 1221-1229 ◽  
Author(s):  
Ali H Nayfeh ◽  
S.A. Emam ◽  
Sergio Preidikman ◽  
D.T. Mook

We investigate the free vibrations of a flexible beam undergoing an overall two-dimensional motion. The beam is modeled using the Euler-Bernoulli beam theory. An exact solution for the natural frequencies and corresponding mode shapes of the beam is obtained. The model can be extended to beams undergoing three-dimensional motions.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
C. Mei

In this paper, natural frequencies and modeshapes of a transversely vibrating Euler–Bernoulli beam carrying a discrete two-degree-of-freedom (2DOF) spring–mass system are obtained from a wave vibration point of view in which vibrations are described as waves that propagate along uniform structural elements and are reflected and transmitted at structural discontinuities. From the wave vibration standpoint, external forces applied to a structure have the effect of injecting vibration waves to the structure. In the combined beam and 2DOF spring–mass system, the vibrating discrete spring–mass system injects waves into the distributed beam through the spring forces at the two spring attached points. Assembling these wave relations in the beam provides an analytical solution to vibrations of the combined system. Accuracy of the proposed wave analysis approach is validated through comparisons to available results. This wave-based approach is further extended to analyze vibrations in a planar portal frame that carries a discrete 2DOF spring–mass system, where in addition to the transverse motion, the axial motion must be included due to the coupling effect at the angled joint of the frame. The wave vibration approach is seen to provide a systematic and concise technique for solving vibration problems in combined distributed and discrete systems.


2012 ◽  
Vol 160 ◽  
pp. 292-296
Author(s):  
Qi Bo Mao ◽  
Yan Ping Nie ◽  
Wei Zhang

The free vibrations of a stepped Euler-Bernoulli beam are investigated by using the Adomian decomposition method (ADM). The stepped beam consists two uniform sections and each section is considered a substructure which can be modeled using ADM. By using boundary condition and continuity condition equations, the dimensionless natural frequencies and corresponding mode shapes can be easily obtained simultaneously. The computed results for different boundary conditions are presented. Comparing the results using ADM to those given in the literature, excellent agreement is achieved.


2011 ◽  
Vol 66-68 ◽  
pp. 753-757
Author(s):  
Wan You Li ◽  
Hai Jun Zhou ◽  
Jun Dai ◽  
Bing Lin Lv ◽  
Dong Hua Wang ◽  
...  

Under the Euler-Bernoulli beam theory, the wave propagation method is used for the vibration analysis of beams with arbitrary boundary conditions. The boundary conditions end the beam could be arbitrary that all the conventional homogeneous beam boundary conditions can be included by setting the stiffnesses of the springs be infinity or zero. In this paper, the flexural displacement of the beam is expressed in the wave propagation form including wave numbers. The wavenumber could be obtained in a known form for conventional boundary conditions. So the results are obtained through the boundary conditions and the known wavenumbers and compared with the numerical results. In order to validate the correctness, results with different stiffness are compared with those obtained by previous published papers.


2012 ◽  
Vol 29 (1) ◽  
pp. 143-155 ◽  
Author(s):  
H.- P. Lin ◽  
D. Yang

AbstractThis paper deals with the transverse free vibrations of a system in which two beams are coupled with a spring-mass device. The dynamics of this system are coupled through the motion of the mass. The entire system is modeled as two two-span beams and each span of the continuous beams is assumed to obey the Euler-Bernoulli beam theory. Considering the compatibility requirements across each spring con-nection position, the eigensolutions (natural frequencies and mode shapes) of this system can be obtained for different boundary conditions. Some numerical results and experimental validations are presented to demonstrate the method proposed in this article.


Author(s):  
Jiaqi Zhong ◽  
Xiaolei Chen ◽  
Yupeng Yuan ◽  
Jiajia Tan

This paper addresses the problem of active vibration suppression for a class of Euler-Bernoulli beam system. The objective of this paper is to design a hybrid temporal-spatial differential controller, which is involved with the in-domain and boundary actuators, such that the closed-loop system is stable. The Lyapunov’s direct method is employed to derive the sufficient condition, which not only can guarantee the stabilization of system, but also can improve the spatial cooperation of actuators. In the framework of the linear matrix inequalities (LMIs) technology, the gain matrices of hybrid controller can obtained by developing a recursive algorithm. Finally, the effectiveness of the proposed methodology is demonstrated by applying a numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document