BOTH STATIC DEFLECTION AND VIBRATION MODE OF UNIFORM BEAM CAN SERVE AS A BUCKLING MODE OF A NON-UNIFORM COLUMN

2000 ◽  
Vol 232 (2) ◽  
pp. 477-489 ◽  
Author(s):  
I. ELISHAKOFF
1975 ◽  
Vol 42 (4) ◽  
pp. 858-864 ◽  
Author(s):  
S. F. Bassily ◽  
S. M. Dickinson

The inadequacy of beam vibration mode shapes when used in the Ritz method to obtain approximate solutions for flexural problems concerning plates involving free edges is demonstrated. A new set of functions, related to beam mode shapes, is postulated which allows considerably more accurate treatment of such plates. Several numerical examples concerning static deflection and free vibration of plates involving free edges are examined and serve to illustrate the applicability and accuracy of the new functions and to further demonstrate the inadequacy of the ordinary beam functions.


2005 ◽  
Vol 128 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Le-Chung Shiau ◽  
Shih-Yao Kuo

A high precision triangular plate element is developed for the free vibration analysis of thermally buckled composite sandwich plates. Due to an uneven thermal expansion in the two principal material directions, the buckling mode of the plate may change from one pattern to another in the postbuckling region for certain fiber orientation and aspect ratio of the plate. Because of this buckle pattern change, the sequence of natural frequencies of the plate is also suddenly altered. By examining the buckling and free vibration modes of the plate, a clear picture of buckle pattern change and vibration mode shifting is presented. Numerical results show that if the shape of a free vibration mode is similar to the plate buckling mode then the natural frequency of that mode will drop to zero when the temperature reaches the buckling temperature.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 567
Author(s):  
Łukasz Żmuda-Trzebiatowski ◽  
Piotr Iwicki

The paper examines effectiveness of the vibration correlation technique which allows determining the buckling or limit loads by means of measured natural frequencies of structures. A steel silo segment with a corrugated wall, stiffened with cold-formed channel section columns was analysed. The investigations included numerical analyses of: linear buckling, dynamic eigenvalue and geometrically static non-linear problems. Both perfect and imperfect geometries were considered. Initial geometrical imperfections included first and second buckling and vibration mode shapes with three amplitudes. The vibration correlation technique proved to be useful in estimating limit or buckling loads. It was very efficient in the case of small and medium imperfection magnitudes. The significant deviations between the predicted and calculated buckling and limit loads occurred when large imperfections were considered.


Author(s):  
Jia-Bin Sun ◽  
Xin-Sheng Xu ◽  
Chee-Wah Lim

AbstractIn this paper, the dynamic buckling of an elastic cylindrical shell subjected to an axial impact load is analyzed in Hamiltonian system. By employing a symplectic method, the traditional governing equations are transformed into Hamiltonian canonical equations in dual variables. In this system, the critical load and buckling mode are reduced to solving symplectic eigenvalues and eigensolutions respectively. The result shows that the critical load relates with boundary conditions, thickness of the shell and radial inertia force. And the corresponding buckling modes present some local shapes. Besides, the process of dynamic buckling is related to the stress wave, the critical load and buckling mode depend upon the impacted time. This paper gives analytically and numerically some new rules of the buckling problem, which is useful for designing shell structures.


2021 ◽  
Author(s):  
Jicheng Zhang ◽  
Lifeng Wang ◽  
Guoan Tai ◽  
Jianxin Zhou ◽  
Wei Sun ◽  
...  

2021 ◽  
Vol 242 ◽  
pp. 112275
Author(s):  
Zhenya Sun ◽  
Zhenkun Lei ◽  
Ruixiang Bai ◽  
Hao Jiang ◽  
Jianchao Zou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document