Tailoring vibration mode of a uniform beam by acoustic metamaterial synthesis

Author(s):  
Jiong Tang ◽  
Jiawen Xu ◽  
Shilong Li
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 567
Author(s):  
Łukasz Żmuda-Trzebiatowski ◽  
Piotr Iwicki

The paper examines effectiveness of the vibration correlation technique which allows determining the buckling or limit loads by means of measured natural frequencies of structures. A steel silo segment with a corrugated wall, stiffened with cold-formed channel section columns was analysed. The investigations included numerical analyses of: linear buckling, dynamic eigenvalue and geometrically static non-linear problems. Both perfect and imperfect geometries were considered. Initial geometrical imperfections included first and second buckling and vibration mode shapes with three amplitudes. The vibration correlation technique proved to be useful in estimating limit or buckling loads. It was very efficient in the case of small and medium imperfection magnitudes. The significant deviations between the predicted and calculated buckling and limit loads occurred when large imperfections were considered.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 125
Author(s):  
Yuqi Jin ◽  
Yurii Zubov ◽  
Teng Yang ◽  
Tae-Youl Choi ◽  
Arkadii Krokhin ◽  
...  

An acoustic metamaterial superlattice is used for the spatial and spectral deconvolution of a broadband acoustic pulse into narrowband signals with different central frequencies. The operating frequency range is located on the second transmission band of the superlattice. The decomposition of the broadband pulse was achieved by the frequency-dependent refraction angle in the superlattice. The refracted angle within the acoustic superlattice was larger at higher operating frequency and verified by numerical calculated and experimental mapped sound fields between the layers. The spatial dispersion and the spectral decomposition of a broadband pulse were studied using lateral position-dependent frequency spectra experimentally with and without the superlattice structure along the direction of the propagating acoustic wave. In the absence of the superlattice, the acoustic propagation was influenced by the usual divergence of the beam, and the frequency spectrum was unaffected. The decomposition of the broadband wave in the superlattice’s presence was measured by two-dimensional spatial mapping of the acoustic spectra along the superlattice’s in-plane direction to characterize the propagation of the beam through the crystal. About 80% of the frequency range of the second transmission band showed exceptional performance on decomposition.


2021 ◽  
Author(s):  
Jicheng Zhang ◽  
Lifeng Wang ◽  
Guoan Tai ◽  
Jianxin Zhou ◽  
Wei Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document