Characterization of Six Mutations in Five Spanish Patients with Mitochondrial Acetoacetyl-CoA Thiolase Deficiency: Effects of Amino Acid Substitutions on Tertiary Structure

2002 ◽  
Vol 75 (3) ◽  
pp. 235-243 ◽  
Author(s):  
Toshiyuki Fukao ◽  
Haruki Nakamura ◽  
Kozue Nakamura ◽  
Celia Perez-Cerda ◽  
Antonio Baldellou ◽  
...  
2006 ◽  
Vol 135 (3) ◽  
pp. 386-391 ◽  
Author(s):  
M. MASE ◽  
M. ETO ◽  
K. IMAI ◽  
K. TSUKAMOTO ◽  
S. YAMAGUCHI

We characterized eleven H9N2 influenza A viruses isolated from chicken products imported from China. Genetically they were classified into six distinct genotypes, including five already known genotypes and one novel genotype. This suggested that such multiple genotypes of the H9N2 virus have possibly already become widespread and endemic in China. Two isolates have amino-acid substitutions that confer resistance to amantadine in the M2 region, and this supported the evidence that this mutation might be a result of the wide application of amantadine for avian influenza treatment in China. These findings emphasize the importance of surveillance for avian influenza virus in this region, and of quarantining imported chicken products as potential sources for the introduction of influenza virus.


2019 ◽  
Vol 237 ◽  
pp. 108398 ◽  
Author(s):  
Krishani Dinali Perera ◽  
Athri D. Rathnayake ◽  
Hongwei Liu ◽  
Niels C. Pedersen ◽  
William C. Groutas ◽  
...  

2020 ◽  
Vol 118 (3) ◽  
pp. 583a
Author(s):  
Dubem Onyejegbu ◽  
Jessica Shepherd ◽  
Elham Pirayesh ◽  
Akash Pandhare ◽  
Zackary R. Gallardo ◽  
...  

1999 ◽  
Vol 43 (11) ◽  
pp. 2671-2677 ◽  
Author(s):  
R. Bonnet ◽  
C. De Champs ◽  
D. Sirot ◽  
C. Chanal ◽  
R. Labia ◽  
...  

ABSTRACT In a survey of resistance to amoxicillin among clinical isolates ofProteus mirabilis, 10 TEM-type β-lactamases were characterized: (i) the well-known penicillinases TEM-1 and TEM-2, the extended-spectrum β-lactamases (ESBLs) TEM-3 and TEM-24, and the inhibitor-resistant TEM (IRT) TEM-44 and (ii) five novel enzymes, a penicillinase TEM-57 similar to TEM-1, an ESBL TEM-66 similar to TEM-3, and three IRTs, TEM-65, TEM-73, and TEM-74. The penicillinase TEM-57 and the ESBL TEM-66 differed from TEM-1 and TEM-3, respectively, by the amino acid substitution Gly-92→Asp (nucleotide mutation G-477→A). This substitution could have accounted for the decrease in pIs (5.2 for TEM-57 and 6.0 for TEM-66) but did not necessarily affect the intrinsic activities of these enzymes. The IRT TEM-65 was an IRT-1-like IRT (Cys-244) related to TEM-2 (Lys-39). The two other IRTs, TEM-73 and TEM-74, were related to IRT-1 (Cys-244) and IRT-2 (Ser-244), respectively, and harbored the amino acid substitutions Leu-21→Phe and Thr-265→Met. In this study, the ESBLs TEM-66, TEM-24, and TEM-3 were encoded by large (170- to 180-kb) conjugative plasmids that exhibited similar patterns after digestion and hybridization with the TEM and AAC(6′)I probes. The three IRTs TEM-65, TEM-73, and TEM-74 were encoded by plasmids that ranged in size from 42 to 70 kb but for which no transfer was obtained. The characterization of five new plasmid-mediated TEM-type β-lactamases and the first report of TEM-24 in P. mirabilis are evidence of the wide diversity of β-lactamases produced in this species and of its possible role as a β-lactamase-encoding plasmid reservoir.


ChemMedChem ◽  
2009 ◽  
Vol 4 (4) ◽  
pp. 570-581 ◽  
Author(s):  
Fabrice Gaston ◽  
Giovana C. Granados ◽  
Sergio Madurga ◽  
Francesc Rabanal ◽  
Faouzi Lakhdar-Ghazal ◽  
...  

1986 ◽  
Vol 6 (2) ◽  
pp. 730-734 ◽  
Author(s):  
W W Colby ◽  
J S Hayflick ◽  
S G Clark ◽  
A D Levinson

We expressed six forms of p21-ras polypeptides in Escherichia coli with differing transformation potentials resulting from amino acid substitutions at position 12. The ability of the encoded p21's to autophosphorylate, bind guanine nucleotides, and hydrolyze GTP was assessed. All versions of p21 bound GTP equivalently; the kinase activity, while dependent upon residue 12, did not correlate with the transforming potential of the polypeptide. All transforming versions exhibited an impaired GTPase activity, while a novel nontransforming derivative [p21(pro-12)] possessed an enhanced GTPase activity. These results provide strong support for the proposal that an impairment of the cellular p21 GTPase activity can unmask its transforming potential.


Sign in / Sign up

Export Citation Format

Share Document