scholarly journals Improvement in Adenoviral Gene Transfer Efficiency after Preincubation at +37°C in Vitro and in Vivo

2002 ◽  
Vol 5 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Maija Kossila ◽  
Suvi Jauhiainen ◽  
Mikko O. Laukkanen ◽  
Pauliina Lehtolainen ◽  
Maiju Jääskeläinen ◽  
...  
2016 ◽  
Vol 8 (10) ◽  
pp. 63
Author(s):  
Saisai Wang ◽  
Yali Wang ◽  
Dan Shen ◽  
Li Zhang ◽  
Songlei Xue ◽  
...  

<p>Transposon mediated transfection is a promising, safe, and convenient way to generate transgenic chicken compared with virus-mediated technology and the in vitro modification of primordial germ cells (PGCs). To establish a simple method for in vivo transfection of chicken PGCs, we applied four different transposon systems (PB, SB, Tol2, and ZB) to investigate the gene transfer efficiency of chicken gonads via direct injection of a mixture of transposon and transposase plasmids and transfection reagent (polyethylenimine, PEI) into the subgerminal cavity of Hamburger and Hamilton stage 2-3 chick embryos. We also compared the effect of the amount of plasmids injected on the gene transfer efficiency of chicken gonads. We found that over 70% of the gonads were green fluorescent protein (GFP)-positive across all four transposon groups, and that the proportion of GFP-positive gonads was not significantly different between different transposons. Some GFP positive cells in gonads were confirmed as germ cells by co-labeling with the germ cell specific antibody. We also found that the proportions of GFP-positive gonads decreased significantly with a decrease of plasmid dose from 100 ng to 20 or 50 ng. Here we revealed that a combination of transposons with PEI is a simple and efficient method for gene transfer into chicken gonads and able to transfect PGCs in vivo that could be used for the production of transgenic chickens.</p>


Biomaterials ◽  
2015 ◽  
Vol 54 ◽  
pp. 87-96 ◽  
Author(s):  
Jennifer L. Choi ◽  
James-Kevin Y. Tan ◽  
Drew L. Sellers ◽  
Hua Wei ◽  
Philip J. Horner ◽  
...  

2004 ◽  
Vol 78 (24) ◽  
pp. 13755-13768 ◽  
Author(s):  
Jaclyn R. Stonebraker ◽  
Danielle Wagner ◽  
Robert W. Lefensty ◽  
Kimberlie Burns ◽  
Sandra J. Gendler ◽  
...  

ABSTRACT Inefficient adenoviral vector (AdV)-mediated gene transfer to the ciliated respiratory epithelium has hindered gene transfer strategies for the treatment of cystic fibrosis lung disease. In part, the inefficiency is due to an absence of the coxsackie B and adenovirus type 2 and 5 receptor (CAR) from the apical membranes of polarized epithelia. In this study, using an in vitro model of human ciliated airway epithelium, we show that providing a glycosylphosphatidylinositol (GPI)-linked AdV receptor (GPI-CAR) at the apical surface did not significantly improve AdV gene transfer efficiency because the lumenal surface glycocalyx limited the access of AdV to apical GPI-CAR. The highly glycosylated tethered mucins were considered to be significant glycocalyx components that restricted AdV access because proteolytic digestion and inhibitors of O-linked glycosylation enhanced AdV gene transfer. To determine whether these in vitro observations are relevant to the in vivo situation, we generated transgenic mice expressing GPI-CAR at the surface of the airway epithelium, crossbred these mice with mice that were genetically devoid of tethered mucin type 1 (Muc1), and tested the efficiency of gene transfer to murine airways expressing apical GPI-human CAR (GPI-hCAR) in the presence and absence of Muc1. We determined that AdV gene transfer to the murine airway epithelium was inefficient even in GPI-hCAR transgenic mice but that the gene transfer efficiency improved in the absence of Muc1. However, the inability to achieve a high gene transfer efficiency, even in mice with a deletion of Muc1, suggested that other glycocalyx components, possibly other tethered mucin types, also provide a significant barrier to AdV interacting with the airway lumenal surface.


Diseases ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 57 ◽  
Author(s):  
Chiaki Hidai ◽  
Hisataka Kitano

Although the development of effective viral vectors put gene therapy on the road to commercialization, nonviral vectors show promise for practical use because of their relative safety and lower cost. A significant barrier to the use of nonviral vectors, however, is that they have not yet proven effective. This apparent lack of interest can be attributed to the problem of the low gene transfer efficiency associated with nonviral vectors. The efficiency of gene transfer via nonviral vectors has been reported to be 1/10th to 1/1000th that of viral vectors. Despite the fact that new gene transfer methods and nonviral vectors have been developed, no significant improvements in gene transfer efficiency have been achieved. Nevertheless, some notable progress has been made. In this review, we discuss studies that report good results using nonviral vectors in vivo in animal models, with a particular focus on studies aimed at in vivo gene therapy to treat cancer, as this disease has attracted the interest of researchers developing nonviral vectors. We describe the conditions in which nonviral vectors work more efficiently for gene therapy and discuss how the goals might differ for nonviral versus viral vector development and use.


2018 ◽  
Vol 36 (6_suppl) ◽  
pp. 120-120
Author(s):  
Flavia De Carlo ◽  
Litty Thomas ◽  
Rounak Nande ◽  
Olivia Boskovic ◽  
Gailen Marshall ◽  
...  

120 Background: Gene transfer to malignant sites using human adenoviruses (hAd) has been limited because of their immunogenicity. Murine cells often lack some of the receptors needed for hAd infection; therefore, are generally non-permissive for hAd infection and replication, which limits translational studies of adenoviral gene transfer techniques. We developed a gene transfer method, which uses a combination of lipid-encapsulated perfluorocarbon microbubbles (MBs) and ultrasound (US) to shield and deliver hAds to a specific tissue bypassing the requirement of the coxsackie and adenovirus receptor (CAR). Methods: Transduction efficiency and GFP protein expression of hAd.GFP was assessed by flow cytometry and fluorescence microscopy in murine TRAMP-C2 and human DU145 prostate cancer cells. Innate and acquired immunity response was determined by ELISA and CTL assay in C57BL/6 mice bearing TRAMP-C2 syngeneic tumor grafts following injections of MBs-Ad.GFP complexes in the presence or absence of ultrasound. Results: We observed that the murine prostate cancer cells TRAMP-C2 were transduced less efficiently by hAd.GFP than the human DU145 cells. We showed in vitro that the transduction rate was increased significantly in both TRAMP-C2 and DU145 prostate cancer cells when delivering the Ad particles by a combination of MBs and US. Moreover, we observed expression of the GFP transgene in both cell lines at 48 hours and 72 hours. Lack of activation of the innate and acquired immunity was observed in vivo by quantifying IL-6 and TNF-α cytokines, and by assaying neutralizing IgG antibodies and CTLs activity, following intratumoral or intravenous injections of MBs-Ad.GFP complexes in the presence or absence of ultrasound. Conclusions: This study demonstrates the feasibility of using the TRAMP-C2 murine model of prostate adenocarcinoma to translate our ultrasound-mediated MB-Ad delivery system from the bench to the clinic. Our data provides evidence that the TRAMP-C2 prostate cancer graft model is a suitable system to study in immune competent animals the capacity of lipid-encapsulated perfluorocarbon MBs and US, to shield and deliver hAds to a site-specific tissue bypassing the requirement of specific receptors.


2002 ◽  
Vol 324 (2) ◽  
pp. 145-148 ◽  
Author(s):  
Nobuhiko Omori ◽  
Hiroyuki Mizuguchi ◽  
Keiko Ohsawa ◽  
Shinichi Kohsaka ◽  
Takao Hayakawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document