transgenic chickens
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 22 (16) ◽  
pp. 8456
Author(s):  
Mohammed A. Rohaim ◽  
Mohammad Q. Al-Natour ◽  
Mohammed A. Abdelsabour ◽  
Rania F. El Naggar ◽  
Yahia M. Madbouly ◽  
...  

Mammalian cells utilize a wide spectrum of pathways to antagonize the viral replication. These pathways are typically regulated by antiviral proteins and can be constitutively expressed but also exacerbated by interferon induction. A myriad of interferon-stimulated genes (ISGs) have been identified in mounting broad-spectrum antiviral responses. Members of the interferon-induced transmembrane (IFITM) family of proteins are unique among these ISGs due to their ability to prevent virus entry through the lipid bilayer into the cell. In the current study, we generated transgenic chickens that constitutively and stably expressed chicken IFITM1 (chIFITM1) using the avian sarcoma-leukosis virus (RCAS)-based gene transfer system. The challenged transgenic chicks with clinical dose 104 egg infective dose 50 (EID50) of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 (clade 2.2.1.2) showed 100% protection and significant infection tolerance. Although challenged transgenic chicks displayed 60% protection against challenge with the sub-lethal dose (EID50 105), the transgenic chicks showed delayed clinical symptoms, reduced virus shedding, and reduced histopathologic alterations compared to non-transgenic challenged control chickens. These finding indicate that the sterile defense against H5N1 HPAIV offered by the stable expression of chIFITM1 is inadequate; however, the clinical outcome can be substantially ameliorated. In conclusion, chIFITM proteins can inhibit influenza virus replication that can infect various host species and could be a crucial barrier against zoonotic infections.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1554
Author(s):  
Seo Woo Kim ◽  
Jeong Hyo Lee ◽  
Ji Seon Han ◽  
Seung Pyo Shin ◽  
Tae Sub Park

A bioreactor can be used for mass production of therapeutic proteins and other bioactive substances. Although various methods have been developed using microorganisms and animal cells, advanced strategies are needed for the efficient production of biofunctional proteins. In microorganisms, post-translational glycosylation and modification are not performed properly, while animal cell systems require more time and expense. To overcome these problems, new methods using products from transgenic animals have been considered, such as genetically modified cow’s milk and hen’s eggs. In this study, based on a non-viral piggyBac transposition system, we generated transgenic bioreactor chickens that produced human cystatin C (hCST3). There were no differences in the phenotype or histochemical structure of the wild-type and hCST3-expressing transgenic chickens. Subsequently, we analyzed the hCST3 expression in transgenic chickens, mainly in muscle and egg white, which could be major deposition warehouses for hCST3 protein. In both muscle and egg white, we detected high hCST3 expression by ELISA and Western blotting. hCST3 proteins were efficiently purified from muscle and egg white of transgenic chickens using a His-tag purification system. These data show that transgenic chickens can be efficiently used as a bioreactor for the mass production of bioactive materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Young Min Kim ◽  
Kyung Je Park ◽  
Jin Se Park ◽  
Kyung Min Jung ◽  
Jae Yong Han

AbstractMost transgenic animals are generated using a genome-modified stem cell system and genome modification directly in embryos. Although this system is well-established in the development of transgenic animals, donor cell-derived transgenic animal production is inefficient in some cases. Especially in avian models such as chickens, the efficiency of transgenic animal production through primordial germ cells (PGCs) is highly variable compared with embryonic manipulation of mammalian species. Because germ cell and germline-competent stem cell-mediated systems that contain the transgene are enriched only at the upstream level during cell cultivation, the efficiency of transgenic animal production is unreliable. Therefore, we developed an in vivo selection model to enhance the efficiency of transgenic chicken production using microsomal glutathione-S-transferase II (MGSTII)-overexpressing PGCs that are resistant to the alkylating agent busulfan, which induces germ cell-specific cytotoxicity. Under in vitro conditions, MGSTII-tg PGCs were resistant to 1 μM busulfan, which was highly toxic to wild-type PGCs. In germline chimeric roosters, transgene-expressing germ cells were dominantly colonized in the recipient testes after busulfan exposure compared with non-treated germline chimera. In validation of germline transmission, donor PGC-derived progeny production efficiency was 94.68%, and the transgene production rate of heterozygous transgenic chickens was significantly increased in chickens that received 40 mg/kg busulfan (80.33–95.23%) compared with that of non-treated germline chimeras (51.18%). This system is expected to significantly improve the efficiency of generating transgenic chickens and other animal species by increasing the distribution of donor cells in adult testes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kate M. Sutton ◽  
Katrina M. Morris ◽  
Dominika Borowska ◽  
Helen Sang ◽  
Pete Kaiser ◽  
...  

The spleen is a major site for the immunological responses to blood-borne antigens that is coordinated by cells of the mononuclear phagocyte system (MPS). The chicken spleen is populated with a number of different macrophages while the presence of conventional dendritic cells (cDC) has been described. However, a detailed characterization of the phenotype and function of different macrophage subsets and cDC in the chicken spleen is limited. Using the CSF1R-reporter transgenic chickens (CSF1R-tg), in which cells of the MPS express a transgene under the control elements of the chicken CSF1R, we carried out an in-depth characterization of these cells in the spleen. Immunohistological analysis demonstrated differential expression of MRC1L-B by periarteriolar lymphoid sheaths (PALS)-associated CSF1R-tg+ cells. In the chicken's equivalent of the mammalian marginal zone, the peri-ellipsoid white-pulp (PWP), we identified high expression of putative CD11c by ellipsoid-associated cells compared to ellipsoid-associated macrophages. In addition, we identified a novel ellipsoid macrophage subset that expressed MHCII, CD11c, MRC1L-B, and CSF1R but not the CSF1R-tg. In flow cytometric analysis, diverse expression of the CSF1R-tg and MHCII was observed leading to the categorization of CSF1R-tg cells into CSF1R-tgdim MHCIIinter−hi, CSF1R-tghi MHCIIhi, and CSF1R-tghi MHCIIinter subpopulations. Low levels of CD80, CD40, MHCI, CD44, and Ch74.2 were expressed by the CSF1R-tghi MHCIIinter cells. Functionally, in vivo fluorescent bead uptake was significantly higher in the CSF1R-tghi MHCIIhi MRC1L-B+ cells compared to the CSF1R-tgdim and CSF1R-tghi MHCIIinter MRC1L-B+ subpopulations while LPS enhanced phagocytosis by the CSF1R-tghi MHCIIinter subpopulation. The analysis of bead localization in the spleen suggests the presence of ellipsoid-associated macrophage subsets. In addition, we demonstrated the functionality of ex vivo derived CSF1R-tg+ MRC1L-Bneg cDC. Finally, RNA-seq analysis of the CSF1R-tg subpopulations demonstrated that separating the CSF1R-tghi subpopulation into CD11chi and CD11cdim cells enriched for cDC and macrophage lineages, respectively, while the CSF1R-tghi MHCIIinter subpopulation was enriched for red pulp macrophages. However, our analysis could not define the cell lineage of the heterogeneous CSF1R-tgdim subpopulation. This detailed overview of the MPS in the chicken spleen will contribute to future research on their role in antigen uptake and presentation.


2021 ◽  
Vol 118 (10) ◽  
pp. e2022562118
Author(s):  
Beate Rieblinger ◽  
Hicham Sid ◽  
Denise Duda ◽  
Tarik Bozoglu ◽  
Romina Klinger ◽  
...  

Genetically modified animals continue to provide important insights into the molecular basis of health and disease. Research has focused mostly on genetically modified mice, although other species like pigs resemble the human physiology more closely. In addition, cross-species comparisons with phylogenetically distant species such as chickens provide powerful insights into fundamental biological and biomedical processes. One of the most versatile genetic methods applicable across species is CRISPR-Cas9. Here, we report the generation of transgenic chickens and pigs that constitutively express Cas9 in all organs. These animals are healthy and fertile. Functionality of Cas9 was confirmed in both species for a number of different target genes, for a variety of cell types and in vivo by targeted gene disruption in lymphocytes and the developing brain, and by precise excision of a 12.7-kb DNA fragment in the heart. The Cas9 transgenic animals will provide a powerful resource for in vivo genome editing for both agricultural and translational biomedical research, and will facilitate reverse genetics as well as cross-species comparisons.


2021 ◽  
Vol 9 (1) ◽  
pp. 164
Author(s):  
Arjun Challagulla ◽  
Kristie A. Jenkins ◽  
Terri E. O’Neil ◽  
Shunning Shi ◽  
Kirsten R. Morris ◽  
...  

Marek’s disease (MD), caused by MD herpesvirus (MDV), is an economically important disease in chickens. The efficacy of the existing vaccines against evolving virulent stains may become limited and necessitates the development of novel antiviral strategies to protect poultry from MDV strains with increased virulence. The CRISPR/Cas9 system has emerged as a powerful genome editing tool providing an opportunity to develop antiviral strategies for the control of MDV infection. Here, we characterized Tol2 transposon constructs encoding Cas9 and guide RNAs (gRNAs) specific to the immediate early infected-cell polypeptide-4 (ICP4) of MDV. We generated transgenic chickens that constitutively express Cas9 and ICP4-gRNAs (gICP4) and challenged them via intraabdominal injection of MDV-1 Woodlands strain passage-19 (p19). Transgenic chickens expressing both gRNA/Cas9 had a significantly reduced replication of MDV in comparison to either transgenic Cas9-only or the wild-type (WT) chickens. We further confirmed that the designed gRNAs exhibited sequence-specific virus interference in transgenic chicken embryo fibroblast (CEF) expressing Cas9/gICP4 when infected with MDV but not with herpesvirus of turkeys (HVT). These results suggest that CRISPR/Cas9 can be used as an antiviral approach to control MDV infection in chickens, allowing HVT to be used as a vector for recombinant vaccines.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 38
Author(s):  
Takehiro Mukae ◽  
Sho Okumura ◽  
Takuma Watanobe ◽  
Kyoko Yoshii ◽  
Takahiro Tagami ◽  
...  

Increased commercial demand for monoclonal antibodies (mAbs) has resulted in the urgent need to establish efficient production systems. We previously developed a transgenic chicken bioreactor system that effectively produced human cytokines in egg whites using genome-edited transgenic chickens. Here, we describe the application of this system to mAb production. The genes encoding the heavy and light chains of humanized anti-HER2 mAb, linked by a 2A peptide sequence, were integrated into the chicken ovalbumin gene locus using a CRISPR/Cas9 protocol. The knock-in hens produced a fully assembled humanized mAb in their eggs. The mAb expression level in the egg white was 1.4–1.9 mg/mL, as determined by ELISA. Furthermore, the antigen binding affinity of the anti-HER2 mAb obtained was estimated to be equal to that of the therapeutic anti-HER2 mAb (trastuzumab). In addition, antigen-specific binding by the egg white mAb was demonstrated by immunofluorescence against HER2-positive and -negative cells. These results indicate that the chicken bioreactor system can efficiently produce mAbs with antigen binding capacity and can serve as an alternative production system for commercial mAbs.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Sung June Byun ◽  
Hoonsung Choi ◽  
Shanmugam Sureshkumar ◽  
Seong-Su Yuk ◽  
Jung-Hoon Kwon ◽  
...  

genesis ◽  
2020 ◽  
Vol 58 (8) ◽  
Author(s):  
Yota Hagihara ◽  
Yuya Okuzaki ◽  
Kazuma Matsubayashi ◽  
Hidenori Kaneoka ◽  
Takayuki Suzuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document