scholarly journals Cytotoxic Immune Response Blunts Long-Term Transgene Expression after Efficient Retroviral-Mediated Hepatic Gene Transfer in Rat

2002 ◽  
Vol 5 (4) ◽  
pp. 388-396 ◽  
Author(s):  
Dominique Aubert ◽  
Séverine Ménoret ◽  
Estelle Chiari ◽  
Virginie Pichard ◽  
Sophie Durand ◽  
...  
1998 ◽  
Vol 72 (6) ◽  
pp. 4601-4609 ◽  
Author(s):  
Ghiabe-Henri Guibinga ◽  
Hanns Lochmuller ◽  
Bernard Massie ◽  
Josephine Nalbantoglu ◽  
George Karpati ◽  
...  

ABSTRACT Recombinant adenovirus vectors (AdV) have been considered a potential vehicle for performing gene therapy in patients suffering from Duchenne muscular dystrophy but are limited by a cellular and humoral immune response that prevents long-term transgene expression as well as effective transduction after AdV readministration. Conventional immunosuppressive agents such as cyclosporine and FK506, which act by interfering with CD3-T-cell receptor-mediated signaling via calcineurin, are only partially effective in reversing these phenomena and may also produce substantial organ toxicity. We hypothesized that activation of redundant T-cell activation pathways could limit the effectiveness of these drugs at clinically tolerable doses. Therefore, we have tested the ability of immunomodulatory immunoglobulins (Ig) with different modes of action to facilitate AdV-mediated gene transfer to adult dystrophic (mdx) mice. When used in isolation, immunomodulatory Ig (anti-intercellular adhesion molecule-1, anti-leukocyte function-associated antigen-1, anti-CD2, and CTLA4Ig) were only mildly effective in mitigating cellular and/or humoral immunity against adenovirus capsid proteins and the therapeutic transgene product, dystrophin. However, the combination of FK506 plus CTLA4Ig abrogated the immune response against adenovirus proteins and dystrophin to a degree not achievable with the use of either agent alone. At 30 days after AdV injection, >90% of myofibers could be found to express dystrophin with little or no evidence of a cellular immune response against transduced fibers. In addition, the humoral immune response was markedly suppressed, and this was associated with increased transduction efficiency following vector readministration. These data suggest that by facilitating both primary and secondary transduction after AdV administration, combined targeting of CD3-T-cell receptor-mediated signaling via calcineurin and the B7:CD28 costimulatory pathway could greatly increase the potential utility of AdV-mediated gene transfer as a therapeutic modality for genetic diseases such as Duchenne muscular dystrophy that will require long-term transgene expression and repeated vector delivery.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5539-5539
Author(s):  
Xianzheng Zhou ◽  
Xin Huang ◽  
Andrew C. Wilber ◽  
Lei Bao ◽  
Dong Tuong ◽  
...  

Abstract The Sleeping Beauty (SB) transposon system is a non-viral DNA delivery system in which a transposase directs integration of an SB transposon into TA-dinucleotide sites in the genome. To determine whether the SB transposon system can mediate integration and long-term transgene expression in human primary T-cells, freshly isolated peripheral blood lymphocytes (PBLs) without prior activation were nucleofected with SB vectors carrying a DsRed reporter gene. Plasmids containing the SB transposase on the same (cis) (n=10) or separate molecule (trans) (n=8) as the SB transposon mediated long-term and stable reporter gene expression in human primary T-cells. We observed that delivery of SB transposase-encoding plasmid in trans effectively mediated stable gene expression in primary T-cells, exhibiting about a 3-fold increase (11% vs. 3% with 10 microgram plasmid on day 21) in potency in comparison with the cis vector (p<0.0001). In addition, a transposase mutant construct was incapable of mediating stable gene expression in human PBLs (n=6, p<0.0001), confirming that catalytic DDE domain is necessary for transposition in human primary T-cells. Immunophenotyping analysis in transposed T-cells showed that both CD4 and CD8 T-cells were transgene positive. SB-mediated high level of transgene expression in human T-cells was maintained in culture for at least 4 months without losing observable expression. Southern hybridization analysis showed a variety of transposon integrants among the 6 DsRed positive T-cell clones and no transposon sequences identifiable in the 2 DsRed negative clones. Sequencing of transposon:chromosome junctions in 5 out of 6 transposed T-cell clones confirmed that stable gene expression was due to SB-mediated transposition. In other studies, PBLs were successfully transfected using the SB transposon system and shown to stably and functionally express a fusion protein consisting of a surface receptor useful for positive T-cell selection and a “suicide” gene useful for elimination of transfected T-cells after chemotherapy. This study is the first report demonstrating that the SB transposon system can mediate stable gene transfer in human primary PBLs, which may be more advantageous for T-cell based gene therapies over widely used virus-based or conventional mammalian DNA vectors in terms of simplicity, stability, efficiency and safety.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3527-3527
Author(s):  
Teiko Sumiyoshi ◽  
Roger P Hollis ◽  
Nathalia Holt ◽  
Donald B. Kohn

Abstract Sleeping Beauty (SB) transposon-mediated integration has been shown to achieve long-term transgene expression in a wide range of host cells. Transposon-mediated gene integration may have advantages over viral vectors, with a greater transgene carrying capacity and potentially safer integration site profile. Due to these characteristics of SB, there has been great interest in its potential use in hematopoietic stem cell (HSC) gene therapy. In this study, we optimized the SB transposon-mediated gene transfer system to achieve higher stable transgene expression in K562 human erythroleukemia cells, Jurkat human T-lymphoid cells, and primary human CD34+ hematopoietic progenitor cells. The SB transposon system was optimized by two approaches: to increase the transposition efficacy, a hyperactive mutant of SB, HSB16, was used (Baus et al.; Mol Ther12:1148, 2005); to optimize the expression of the SB transposase and the transgene cassette carried by the transposon, three different viral and cellular promoters were evaluated, including the modified MPSV long terminal repeat (MNDU3) enhancer-promoter, the human cytomegalovirus (hCMV) immediate-early region enhancer-promoter, and the human elongation factor 1 (hEF1a) promoter. SB components were delivered in trans into the target cells by nucleoporation. The SB transposon-mediated integration efficacy was assessed by integrated transgene (enhanced green fluorescent protein [eGFP]) expression using fluorescent-activated cell sorting (FACS) analysis over 3–4 weeks. The functional assay showed that HSB16 was a more efficient enzyme compared to the original SB. In purified human cord blood CD34+ cells, HSB16 achieved nearly 7-fold higher long-term transgene expression with 90% less plasmid DNA (from 10 mcg of SB reduced to 1 mcg of HSB16) than the original SB transposase. The highest level of stable transgene integration in all three cell types was achieved using the hEF1a promoter to express HSB16 in comparison to either the hCMV or MND promoter. Our data also suggested that optimal GFP reporter gene expression from the integrated transposon was influenced by the type of promoter and the target cell type. Significantly higher levels of eGFP expression (5-fold) were achieved with the hEF1a promoter in Jurkat human T cells, compared to that achieved with the MND promoter; in contrast the MND promoter expressed GFP at the highest level in K562 myeloid cells. In primary human CD34+ cord blood progenitors, optimal transgene integration and expression was achieved using the hEF1a promoter to express the SB transposase combined with the MND promoter to express GFP reporter, when studied under conditions directing myeloid differentiation. Stable transgene expression was achieved at levels up to 27% for over 4 weeks after optimized gene transfer to CD34+ cells (ave=17%, n=4). In vivo studies evaluating engraftment and differentiation of the SB-modified human CD34+ progenitor cells are currently in progress. In conclusion, the optimized SB transposon system in primary human CD34+ hematopoietic progenitors reported here has improved the stable gene transfer efficiency by 29-fold, compared to our prior published data (< 1% - Hollis et al.; Exp Hematol34:1333, 2006). The long-term stable gene expression achieved by our optimized SB transposon system shows promise for further advancement of non-viral based HSC gene therapy.


2001 ◽  
Vol 116 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Robert Dinser ◽  
Florian Kreppel ◽  
Frank Zaucke ◽  
Christoph Blank ◽  
Mats Paulsson ◽  
...  

2000 ◽  
Vol 69 (Supplement) ◽  
pp. S278
Author(s):  
Chengyang Liu ◽  
Kanli Jiang ◽  
Shaoping Deng ◽  
Andrew Gelman ◽  
Wenying Liu ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1106
Author(s):  
Altar M. Munis

Recent commercialization of lentiviral vector (LV)-based cell therapies and successful reports of clinical studies have demonstrated the untapped potential of LVs to treat diseases and benefit patients. LVs hold notable and inherent advantages over other gene transfer agents based on their ability to transduce non-dividing cells, permanently transform target cell genome, and allow stable, long-term transgene expression. LV systems based on non-human lentiviruses are attractive alternatives to conventional HIV-1-based LVs due to their lack of pathogenicity in humans. This article reviews non-human lentiviruses and highlights their unique characteristics regarding virology and molecular biology. The LV systems developed based on these lentiviruses, as well as their successes and shortcomings, are also discussed. As the field of gene therapy is advancing rapidly, the use of LVs uncovers further challenges and possibilities. Advances in virology and an improved understanding of lentiviral biology will aid in the creation of recombinant viral vector variants suitable for translational applications from a variety of lentiviruses.


2001 ◽  
Vol 892 (2) ◽  
pp. 229-240 ◽  
Author(s):  
Stefan Isenmann ◽  
Stefan Engel ◽  
Sebastian Kügler ◽  
Claude Gravel ◽  
Michael Weller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document