Glacial Lowstand Deposits on the Outer Continental Shelf of Southeastern Australia

1995 ◽  
Vol 44 (2) ◽  
pp. 294-299 ◽  
Author(s):  
Marie A. Ferland ◽  
Peter S. Roy ◽  
Colin V. Murray-Wallace

AbstractVibracores collected from water depths of 130 to 150 m on the outer continental shelf of southeastern Australia contain evidence for several cycles of shallow marine deposition. One of these vibracores (112/VC/134; lat. 33°24′S, long, 151°58′ E) preserves evidence for the last three glacial lowstands, as inferred from radiocarbon dating, amino acid racemization, and fossil mollusc assemblages. The core contains the inner-shelf molluscs Pecten fumatus, Placamen placidium, and Tawera gallinula, which today live in water depths of 10 to 50 m, in the cool waters of southern Australia. Radiocarbon dating and amino acid racemization analyses on multiple valves of P. fumatus in the core indicate three distinct age groupings of fossil molluscs: (1) those younger than 20,000 yr B.P., (2) those with minimum ages of about 100,000 yr, and (3) those with minimum ages of about 200,000 yr. We assign these sediments to oxygen isotope stages 2, 6, and 8, respectively. The core contains the first shallow-marine lowstand deposits to be recovered from the shelf of eastern Australia. These deposits constrain the last three glacial lowstands on this margin to water depths <130 m below present sea level.

1995 ◽  
Vol 9 (1) ◽  
pp. 107
Author(s):  
RC Willan

Nannamoria Iredale, 1929, is redefined and monophyly is restored by reinstatement of Paramoria McMichael, 1960, and removal of Volutoconus capricorneus Wilson, 1972. Nannamoria is considered to be representative of the Eastern Overlap Zone rather than the Southern Australian Biogeographic Region. Nannamoria ranya, sp. nov., is described from the outer continental shelf and slope off north-eastern Australia. It occurs closer to the eastern margin of the Australian Continental Shelf than any other species of volute.


2021 ◽  
Vol 657 ◽  
pp. 161-172
Author(s):  
JL Vecchio ◽  
JL Ostroff ◽  
EB Peebles

An understanding of lifetime trophic changes and ontogenetic habitat shifts is essential to the preservation of marine fish species. We used carbon and nitrogen stable isotope values (δ13C and δ15N) recorded within the laminar structure of fish eye lenses, reflecting both diet and location over time, to compare the lifetime trends of 2 demersal mesopredators. Tilefish Lopholatilus chamaeleonticeps inhabit burrows on the outer continental shelf, which results in exceptional site fidelity. Red grouper Epinephelus morio are spawned on the middle to outer continental shelf, move to the inner shelf for the juvenile period, and return offshore upon sexual maturity. Both species inhabit the eastern Gulf of Mexico, a region with a distinctive offshore-inshore gradient in background δ13C values. Within individual tilefish (n = 36), sequences of δ13C values and δ15N values had strong, positive correlations with eye-lens diameter, and strong correlations between the 2 isotopes (mean Spearman r = 0.86), reflecting an increase in trophic position with growth and little lifetime movement. In red grouper (n = 30), δ15N values positively correlated with eye-lens diameter, but correlations between δ15N and δ13C were weak (mean Spearman r = 0.29), suggesting cross-shelf ontogenetic movements. Linear mixed model results indicated strong relationships between δ15N and δ13C values in tilefish eye lenses but no convergence in the red grouper model. Collectively, these results are consistent with previously established differences in the life histories of the 2 species, demonstrating the potential utility of eye-lens isotope records, particularly for investigating the life histories of lesser-known species.


Sign in / Sign up

Export Citation Format

Share Document