EFFECTS OF PELLETIZED SEWAGE SLUDGE ON SOIL PROPERTIES OF A CRACKING CLAY FROM EASTERN AUSTRALIA

1996 ◽  
Vol 14 (6) ◽  
pp. 571-580 ◽  
Author(s):  
N Hulugalle
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuhua Shan ◽  
Min Lv ◽  
Wengang Zuo ◽  
Zehui Tang ◽  
Cheng Ding ◽  
...  

AbstractThe most important measures for salt-affected mudflat soil reclamation are to reduce salinity and to increase soil organic carbon (OC) content and thus soil fertility. Salinity reduction is often accomplished through costly freshwater irrigation by special engineering measures. Whether fertility enhancement only through one-off application of a great amount of OC can improve soil properties and promote plant growth in salt-affected mudflat soil remains unclear. Therefore, the objective of our indoor pot experiment was to study the effects of OC amendment at 0, 0.5%, 1.0%, 1.5%, and 2.5%, calculated from carbon content, by one-off application of sewage sludge on soil properties, rice yield, and root growth in salt-affected mudflat soil under waterlogged conditions. The results showed that the application of sewage sludge promoted soil fertility by reducing soil pH and increasing content of OC, nitrogen and phosphorus in salt-affected mudflat soil, while soil electric conductivity (EC) increased with increasing sewage sludge (SS) application rates under waterlogged conditions. In this study, the rice growth was not inhibited by the highest EC of 4.43 dS m−1 even at high doses of SS application. The SS application increased yield of rice, promoted root growth, enhanced root activity and root flux activity, and increased the soluble sugar and amino acid content in the bleeding sap of rice plants at the tillering, jointing, and maturity stages. In conclusion, fertility enhancement through organic carbon amendment can “offset” the adverse effects of increased salinity and promote plant growth in salt-affected mudflat soil under waterlogged conditions.


Pedosphere ◽  
2021 ◽  
Vol 31 (4) ◽  
pp. 572-582
Author(s):  
Barbara Samartini Queiroz ALVES ◽  
Katherin Prissila Sevilla ZELAYA ◽  
Fernando COLEN ◽  
Ledivan Almeida FRAZÃO ◽  
Alfredo NAPOLI ◽  
...  

2016 ◽  
Vol 06 (01) ◽  
pp. 1-10 ◽  
Author(s):  
Vanessa N. Lima ◽  
Ricardo V. Trótski O. Silva ◽  
Patrícia Nunes ◽  
Paulo H. da Silva ◽  
Kyriale Morant ◽  
...  

2020 ◽  
Vol 274 ◽  
pp. 111171
Author(s):  
Ustun Sahin ◽  
Fatih Mehmet Kiziloglu ◽  
Almujtaba Hassbalrassol Muhammed Abdallh ◽  
Abdoul Nasser Aboubacar Dan Badaou ◽  
Hassan Abdalla Sabtow ◽  
...  

Soil Research ◽  
1997 ◽  
Vol 35 (3) ◽  
pp. 643 ◽  
Author(s):  
Xiang Yang Chen

The Wagga Wagga 1 : 100 000 map sheet is on the Western Slopes of southern New South Wales. The regional topography changes from hills in the east and south-east to gently sloping rises and alluvial plains in the west. Aeolian clays (parna) form a consistent clay regolith regardless of the underlying geology in the gently sloping areas. In some alluvial plains and on some lower hill slopes, the surficial sediments contain a significant portion of reworked parna. In hilly areas, parna is poorly preserved except on some remnant ancient land surfaces, such as dissected plateaux and piedmont plains. The soil pattern in the area is well controlled by landform processes and history. On relatively steep hill slopes, locally derived materials from weathering of bedrock are usually the dominant components of the soils, and geology is the dominant factor controlling soil distribution. In contrast, the Murrumbidgee high floodplain is covered by uniform silty clay with deep clayey soils (brown/grey Dermosols). Before the mid-Holocene, the alluvium mainly comprised sands and gravels, which were reworked by wind forming sand sheets and sand mounds (source-bordering dunes) on which deep sandy soils (Rudosols) now occur. The sediments and soils on the alluvial plains of local streams vary according to their distance from the source area and the flooding frequency. Areas considered to be mantled by parna, uniform red clayey soils (haplic red Kandosols/Chromosols) occur. Although the distribution pattern of the soils is controlled by the landform evolution, the relationships between soil morphological properties and topography are not readily quantified. On the alluvial and gently sloping landforms, soil properties usually show little change even though slope gradient and slope length vary. Some soils, e.g. the Rudosols on the sand sheets, rarely show any topographic features which may indicate their presence. In limited areas, e.g. on steeper hills formed on metasedimentary rock, the soil properties vary with changes in topographic parameters (slope gradient and slope length).


Sign in / Sign up

Export Citation Format

Share Document