Isotopes in Atmospheric Moisture

2005 ◽  
pp. 291-302 ◽  
Author(s):  
K. Rozanski
Keyword(s):  
2020 ◽  
Vol 59 (9) ◽  
pp. 096503
Author(s):  
Nairit Das ◽  
Neha Bhattacharyya ◽  
Soumendra Singh ◽  
Animesh Halder ◽  
Deep Shikha ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. 156-160
Author(s):  
T. M. Kuderina ◽  
S. B. Suslova ◽  
V. N. Lunin ◽  
A. V. Kudikov

1992 ◽  
Vol 11 (2) ◽  
pp. 37-41 ◽  
Author(s):  
Jinlai Xie ◽  
Xunren Yang ◽  
Qitai Li

Can solar eclipses generate AGWs? If so, how are they excited? This is still an open question and a long-standing dispute within academic circles. The annular solar eclipse which traversed the Chinese mainland on September 23rd 1987 afforded a rare and excellent opportunity to study this problem. Vast amounts of data of microbarometric pressure at ground level, radio-sondage, solar radiation and ionospheric probing were obtained from various observation stations. By making use of these abundant data synthetically, an important conclusion has been reached: there is an obvious accord between the period of the solar eclipse, AGW and the fluctuation period of solar direct radiation. All the solar eclipse AGWs in different places come from two different kinds of atmospheric oscillation, i.e., the forced oscillation generated directly by changes in direct solar radiation and the buoyancy oscillation in the local atmosphere above various spots. The former has a longer wave period and a larger amplitude, depending directly upon the radiation change during the solar eclipse; the latter has a shorter period and smaller amplitude, depending upon thermodynamic stability in the local atmosphere during the solar eclipse and the atmospheric moisture condition.


2015 ◽  
Vol 16 (1) ◽  
pp. 278-294 ◽  
Author(s):  
Francesco Avanzi ◽  
Carlo De Michele ◽  
Salvatore Gabriele ◽  
Antonio Ghezzi ◽  
Renzo Rosso

Abstract This paper investigates how atmospheric circulation and orography affect the spatial variability of extreme precipitation in terms of depth–duration–frequency (DDF) curve parameters. To this aim, the Italian territory was considered because it is characterized by a complex orography and different precipitation dynamics and regimes. A database of 1494 time series with more than 20 years of maximum annual precipitation data was collected for the durations of 1, 3, 6, 12, and 24 h. For each data series, the parameters of DDF curves were estimated using a statistical simple scale invariance model. Hence, the combined effect of orography and atmospheric fields on parameter variability was investigated considering the spatial distribution of the parameters and their relation with elevation. The vertically integrated atmospheric moisture flux J was used as a measurement of the principal direction of the vapor transport at a given location. The analysis highlights the variability of DDF parameters and quantiles according to orography and precipitation climatology. This is confirmed by the evaluation of J modal direction over the study area. The variability of DDF parameters with mere elevation shows that maxima at high elevations seem to be upper bounded and more variable than those at lower elevations. Moreover, the mean of maximum annual precipitation of unit duration decreases with elevation. This last phenomenon is defined as “reverse orographic effect” on extreme precipitation of short durations.


Sign in / Sign up

Export Citation Format

Share Document