Large Deflection Behavior of Functionally Graded Plates Under Pressure Loads, Using Finite Strip Method

Author(s):  
H. R. Ovesy ◽  
S. A. M. GhannadPour
2012 ◽  
Vol 152-154 ◽  
pp. 1470-1476 ◽  
Author(s):  
Seyyed Amir Mahdi Ghannadpour ◽  
Hamid Reza Ovesy ◽  
Mohammad Nassirnia

Semi-analytical finite strip method (FSM) for analyzing the buckling behavior of some functionally graded plates is presented in this paper. The plates are assumed to be under three types of mechanical loadings, namely; uniaxial compression, biaxial compression, and biaxial compression and tension. The material properties are assumed to vary in the thickness direction according to the power-law variation in terms of volume fractions of the constituents. Thus, the material properties are estimated from the both Voigt rule of mixtures (VRM) and Mori-Tanaka homogenization method (MTM). Numerical results for a variety of functionally graded plates with different aspect ratio are given and compared.


2019 ◽  
Vol 37 (4) ◽  
pp. 1369-1395 ◽  
Author(s):  
Mohammad Amin Shahmohammadi ◽  
Mojtaba Azhari ◽  
Mohammad Mehdi Saadatpour ◽  
Saeid Sarrami-Foroushani

Purpose This paper aims to analyze the stability of laminated shells subjected to axial loads or external pressure with considering various geometries and boundary conditions. The main aim of the present study is developing an efficient combined method which uses the advantages of different methods, such as finite element method (FEM) and isogeometric analysis (IGA), to achieve multipurpose targets. Two types of material including laminated composite and sandwich functionally graded material are considered. Design/methodology/approach A novel type of finite strip method called isogeometric B3-spline finite strip method (IG-SFSM) is used to solve the eigenvalue buckling problem. IG-SFSM uses B3-spline basis functions to interpolate the buckling displacements and mapping operations in the longitudinal direction of the strips, whereas the Lagrangian functions are used in transverse direction. The current presented IG-SFSM is formulated based on the degenerated shell method. Findings The buckling behavior of laminated shells is discussed by solving several examples corresponding to shells with various geometries, boundary conditions and material properties. The effects of mechanical and geometrical properties on critical loads of shells are investigated using the related results obtained by IG-SFSM. Originality/value This paper shows that the proposed IG-SFSM leads to the critical loads with an approved accuracy comparing with the same examples extracted from the literature. Moreover, it leads to a high level of convergence rate and low cost of solving the stability problems in comparison to the FEM.


2011 ◽  
Vol 471-472 ◽  
pp. 432-437
Author(s):  
Hamid Reza Ovesy ◽  
Mohammad Homayoun Sadr-Lahidjani ◽  
Mohammad Hajikazemi ◽  
Hassan Assaee

In this paper, the application of previously the semi energy finite strip method (FSM) for the non-linear post-buckling analysis of rectangular anti-symmetric laminates is extended to include the effects of normal pressure loading in addition to the progressive end-shortening. One of the main advantages of the semi-energy FSM is that it is based on the closed form solution of von Kármán’s compatibility equation. The developed finite strip method is applied to analyze the large deflection behavior of anti-symmetric angle ply composite laminated plates with simply supported boundary conditions at its loaded ends. To validate the results, they are compared with those obtained from finite element method (FEM) of analysis.


2021 ◽  
pp. 109963622110204
Author(s):  
Mohammad Naghavi ◽  
Saeid Sarrami-Foroushani ◽  
Fatemeh Azhari

In this study, static analysis of functionally graded (FG) sandwich plates is performed using the finite strip method based on the refined plate theory (RPT). Two types of common FG sandwich plates are considered. The first sandwich plate is composed of two FG material (FGM) face sheets and a homogeneous ceramic or metal core. The second one consists of two homogeneous fully metal and ceramic face sheets at the top and bottom, respectively, and a FGM core. Differential equations of FG sandwich plates are obtained using Hamilton's principle and stiffness and force matrices are formed using the finite strip method. The central deflection and the normal stress values are obtained for a sinusoidal loaded FG sandwich plate and the accuracy of the results are verified against those obtained from other theories such as the classical plate theory (CPT), the first-order shear deformation theory (FSDT), and the higher order shear deformation theory (HSDT). For the first time, this study presents a finite strip formulation in conjunction with the RPT to analyze FG Sandwich plates. While the proposed method is fast and simple, it is capable of modeling a variety of boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document