Search for Nearby Faint High Proper Motion Stars

2006 ◽  
pp. 16-20
Author(s):  
Ralf-Dieter Scholz
Keyword(s):  
2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


1978 ◽  
Vol 48 ◽  
pp. 527-533
Author(s):  
Chr. de Vegt

The present accuracy limit for the majority of fainter stars on the northern hemisphere is set by the AGK2/3-catalogue, recently completely finished, but it should be noted that its epoch is much earlier (1960). Furtheron the AGK3-catalogue is a direct repetition of the AGK2, the plates have been taken with the same astrograph in a broad blue spectral bandpass and measured visually with the same equipment, therefore virtually an instrumental standard of 1930 is realized again. Figure 1 shows the mean errors of the AGK2/3 catalogue positions as a function of magnitude. The best accuracy for the AGK2/3 data is obtained for the stars of about ninth magnitude: 017 (AGK2) and 020 (AGK3) but decreases for the faint stars with mpg11 to 019 (AGK2) and Pg 027 (AGK3). Here the AGK3 data are even less accurate. With increasing distance to the catalogue epochs, the accuracy of positions decreases due to the proper motion errors. In the upper part of figure 2 the dependence of the AGK2/3 catalogue accuracy on time is shown for the faint stars separately and an averaged value.


1978 ◽  
Vol 48 ◽  
pp. 387-388
Author(s):  
A. R. Klemola
Keyword(s):  

Second-epoch photographs have now been obtained for nearly 850 of the 1246 fields of the proper motion program with centers at declination -20° and northwards. For the sky at 0° and northward only 130 fields remain to be taken in the next year or two. The 270 southern fields with centers at -5° to -20° remain for the future.


1998 ◽  
Vol 11 (1) ◽  
pp. 313-316
Author(s):  
F. Mignard ◽  
M. Froeschile

Abstract The Hipparcos optical reference frame is compared to the basic FK5 in order to determine the orientation at T0 = 1991.25 and the global spin between the two frames. The components of the spin are significant and suggest a correction the IAU76 value of the precession constant and to a possible non-precessional motion of the equinox of the FK5. The regional errors are analysed with harmonic functions and found to be as large as 150 mas in position and 3 mas/yr in proper motion.


1998 ◽  
Vol 11 (1) ◽  
pp. 536-538
Author(s):  
J. Kovalevsky

Abstract The astrometric results of Hipparcos include the positions at epoch (1991.25), the proper motion in the new IAU extragalactic reference system (ICRS), and parallaxes for about 118 000 stars. One dimensional positions are also given for 48 asteroids and 3 satellites. Due to the non-isotropy of the scanning law, the uncertainties are position dependent. Some indications of the remaining correlations are given. Various tests and comparisons show that systematic errors in parallax, if any, are not larger than 0.1 millisecond of arc.


2001 ◽  
Vol 205 ◽  
pp. 404-407
Author(s):  
R.M. Campbell

I briefly review the means by which VLBI observations can determine the position, proper motion, and parallax of a pulsar, consider a subset of the applications of such results, and highlight recent developments in pulsar gating at JIVE.


1995 ◽  
Vol 166 ◽  
pp. 357-357
Author(s):  
I. Platais ◽  
T. M. Girard ◽  
V. Kozhurina-Platais ◽  
R. A. Mendez ◽  
W. F. Van Altena ◽  
...  

We present the status of the Yale/San Juan Southern Proper Motion program (SPM) which is the southern hemisphere extension of the Lick Observatory Northern Proper Motion program with respect to faint galaxies (Platais et al., 1993). To date, measurements and reductions in the South Galactic Pole region comprising ≈ 1000 square-degrees on the sky have been finished. At this stage of the SPM program particular attention has been paid to the plate model choice along with an assessment of and accounting for systematic errors. For our establishing of a secondary reference frame we have noticed the presence of a potentially dangerous effect, so–called field–independent coma which is caused by lens decentering. We acknowledge the superb Hipparcos preliminary positions without which such analysis would be virtually impossible. The SPM data at the SGP region have also been used to constrain a multi–component Galaxy model. First results of this analysis are presented.


1993 ◽  
Vol 264 (3) ◽  
pp. 579-586 ◽  
Author(s):  
R.- D. Scholz ◽  
M. Odenkirchen ◽  
M. J. Irwin

2018 ◽  
Vol 616 ◽  
pp. A2 ◽  
Author(s):  
L. Lindegren ◽  
J. Hernández ◽  
A. Bombrun ◽  
S. Klioner ◽  
U. Bastian ◽  
...  

Context. Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. Aims. We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these resultsperformed within the astrometry task. Methods. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. These data were calculated in two steps. First, the satellite attitude and the astrometric calibration parameters of the CCDs were obtained in an astrometric global iterative solution for 16 million selected sources, using about 1% of the input data. This primary solution was tied to the extragalactic International Celestial Reference System (ICRS) by means of quasars. The resulting attitude and calibration were then used to calculate the astrometric parameters of all the sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion. Results. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G < 14 mag) sources, 0.1 mas at G = 17 mag, and 0.7 masat G = 20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas yr−1, respectively.The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas yr−1. From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas yr−1 in proper motion are seen on small (< 1 deg) and intermediate (20 deg) angular scales. Important statistics and information for the users of the Gaia DR2 astrometry are given in the appendices.


Sign in / Sign up

Export Citation Format

Share Document