celestial reference system
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Chunhao Han ◽  
Li Liu ◽  
Zhiwu Cai ◽  
Yuting Lin

AbstractThe BeiDou Navigation Satellite System (BDS) is essentially a precise time measurement and time synchronization system for a large-scale space near the Earth. General relativity is the basic theoretical framework for the information processing in the master control station of BDS. Having introduced the basic conceptions of relativistic space–time reference systems, the space–time references of BDS are analyzed and the function and acquisition method of the Earth Orientation Parameters (EOP) are briefly discussed. The basic space reference of BDS is BeiDou Coordinate System (BDCS), and the time standard is the BDS Time (BDT). BDCS and BDT are the realizations of the Geocentric Terrestrial Reference System (GTRS) and the Terrestrial Time (TT) for BDS, respectively. The station coordinates in the BDCS are consistent with those in International Terrestrial Reference Frame (ITRF)2014 at the cm–level and the difference in scale is about $$1.1 \times 10^{ - 8}$$ 1.1 × 10 - 8 . The time deviation of BDT relative to International Atomic Time (TAI) is less than 50 ns and the frequency deviation is less than $$2 \times 10^{ - 14}$$ 2 × 10 - 14 . The Geocentric Celestial Reference System (GCRS) and the solar Barycentric Celestial Reference System (BCRS) are also involved in the operation of BDS. The observation models for time synchronization and precise orbit determination are established within the GCRS framework. The coordinate transformation between BDCS and GCRS is consistent with the International Earth Rotation and Reference Systems Service (IERS). In the autonomous operation mode without the support of the ground master control station, Earth Orientation Parameters (EOP) is obtained by means of long-term prediction and on-board observation. The observation models for the on-board astrometry should be established within the BCRS framework.


2021 ◽  
Vol 645 ◽  
pp. A48
Author(s):  
Ye Yuan ◽  
Fan Li ◽  
Yanning Fu ◽  
Shulin Ren

Context. Developing high-precision ephemerides for Neptunian satellites requires not only the continuation of observing campaigns but also the collection and improvement of existing observations. So far, no complete catalogs of observations of Neptunian satellites are available. Aims. We aim to provide new, precise positions, and to compile a catalog including all available ground-based astrometric observations of Neptunian satellites. The observations are tabulated in a single and consistent format and given in the same timescale, the Terrestrial Time (TT), and reference system, the International Celestial Reference System (ICRS), including necessary changes and corrections. Methods. New CCD observations of Triton and Nereid were made at Lijiang 2.4-m and Yaoan 0.8-m telescopes in 2013–2019, and then reduced based on Gaia-DR2. Furthermore, a catalog called OCNS2019 (Observational Catalog of Neptunian Satellites (2019 version)) was compiled, after recognizing and correcting errors and omissions. Furthermore, in addition to what was considered for the COSS08 catalog for eight main Saturnian satellites, all observed absolute and relative coordinates were converted to the ICRS with corrections for star catalog biases with respect to Gaia-DR2. New debiasing tables for both the modern and old star catalogs, which were previously not provided based on Gaia-DR2, are developed and applied. Treatment of missing positions of comparison bodies in conversions of observed relative coordinates are proposed. Results. OCNS2019 and the new debiasing tables are publicly available online. OCNS2019 includes 24996 observed coordinates of 11 Neptunian satellites obtained over 3741 nights from 1847 to 2019. All observations are given in TT and ICRS. The star catalog biases are removed, which are significant for Nereid and outer satellites. We obtained 880 (5% of total now available) new coordinates for Triton over 41 nights (1% of total observation nights so far), and 790 (14%) for Nereid over 47 nights (10%). The dispersions of these new positions are about 0.″03 for Triton and 0.″06 for Nereid. Conclusions. OCNS2019 should be useful in improving ephemerides for the above-mentioned objects.


2021 ◽  
pp. 2-2
Author(s):  
G. Damljanovic ◽  
M. Stojanovic ◽  
J. Aleksic

The Gaia DR2 reference frame should be without relative rotation to the quasars (QSOs) and consistent with the International Celestial Reference System (ICRS). For the faint part of DR2 (stars with Gaia magnitude G ? 16) that task was done via Gaia's observations of QSOs (G ? 17 mag), but the bright DR2 (G ? 13 mag) is difficult to validate and it rotates relative to the faint DR2 at rate of the order of 0.1 mas/yr. Very bright DR2 stars (G ? 6 mag) mostly have inferior astrometry. Here, the aim is to determine two spin components (?X and ?Y) of the bright DR2 using International Latitude Service (ILS, for 387 stars) and independent latitude stations (INDLS, for 682 stars) catalogs of proper motion in declination ??; both are referred to the Hipparcos reference frame and their stars are mostly from 4 to 8 mag in the V-band (critical part of DR2). Also, using the new Hipparcos (NHIP) values ?? for ILS and INDLS stars, we can see that the merit of the ILS and INDLS is the long time baseline (?t ? 90 years) important for ?? because the standard deviation of ?? is opposite to ?t. Applying the least squares method (LSM) to the differences of ?? between two catalogs (ILS-DR2, INDLS-DR2, etc.), our results support the mentioned spin. The 3? criterion and Tukey's fences method were used to reject some stars, the Abbe criterion to explain the variability in ILS-DR2 and other ?? differences, and the Shapiro-Wilk test to check the standard distribution of differences. The obtained ?Y is significant at the 2 ? level, and the ILS and INDLS catalogs could be useful for validation of the bright reference frame of Gaia DR2.


2020 ◽  
Vol 644 ◽  
pp. A40
Author(s):  
F. L. Rommel ◽  
F. Braga-Ribas ◽  
J. Desmars ◽  
J. I. B. Camargo ◽  
J. L. Ortiz ◽  
...  

Context. Trans-Neptunian objects (TNOs) and Centaurs are remnants of our planetary system formation, and their physical properties have invaluable information for evolutionary theories. Stellar occultation is a ground-based method for studying these distant small bodies and has presented exciting results. These observations can provide precise profiles of the involved body, allowing an accurate determination of its size and shape. Aims. The goal is to show that even single-chord detections of TNOs allow us to measure their milliarcsecond astrometric positions in the reference frame of the Gaia second data release (DR2). Accurate ephemerides can then be generated, allowing predictions of stellar occultations with much higher reliability. Methods. We analyzed data from various stellar occultation detections to obtain astrometric positions of the involved bodies. The events published before the Gaia era were updated so that the Gaia DR2 stellar catalog is the reference, thus providing accurate positions. Events with detection from one or two different sites (single or double chord) were analyzed to determine the event duration. Previously determined sizes were used to calculate the position of the object center and its corresponding error with respectto the detected chord and the International Celestial Reference System propagated Gaia DR2 star position. Results. We derive 37 precise astrometric positions for 19 TNOs and four Centaurs. Twenty-one of these events are presented here for the first time. Although about 68% of our results are based on single-chord detection, most have intrinsic precision at the submilliarcsecond level. Lower limits on the diameter of bodies such as Sedna, 2002 KX14, and Echeclus, and also shape constraints on 2002 VE95, 2003 FF128, and 2005 TV189 are presented as valuable byproducts. Conclusions. Using the Gaia DR2 catalog, we show that even a single detection of a stellar occultation allows improving the object ephemeris significantly, which in turn enables predicting a future stellar occultation with high accuracy. Observational campaigns can be efficiently organized with this help, and may provide a full physical characterization of the involved object, or even the study of topographic features such as satellites or rings.


2018 ◽  
Vol 616 ◽  
pp. A2 ◽  
Author(s):  
L. Lindegren ◽  
J. Hernández ◽  
A. Bombrun ◽  
S. Klioner ◽  
U. Bastian ◽  
...  

Context. Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. Aims. We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these resultsperformed within the astrometry task. Methods. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. These data were calculated in two steps. First, the satellite attitude and the astrometric calibration parameters of the CCDs were obtained in an astrometric global iterative solution for 16 million selected sources, using about 1% of the input data. This primary solution was tied to the extragalactic International Celestial Reference System (ICRS) by means of quasars. The resulting attitude and calibration were then used to calculate the astrometric parameters of all the sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion. Results. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G < 14 mag) sources, 0.1 mas at G = 17 mag, and 0.7 masat G = 20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas yr−1, respectively.The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas yr−1. From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas yr−1 in proper motion are seen on small (< 1 deg) and intermediate (20 deg) angular scales. Important statistics and information for the users of the Gaia DR2 astrometry are given in the appendices.


2018 ◽  
Vol 616 ◽  
pp. A14 ◽  
Author(s):  
◽  
F. Mignard ◽  
S. A. Klioner ◽  
L. Lindegren ◽  
J. Hernández ◽  
...  

Context. The second release of Gaia data (Gaia DR2) contains the astrometric parameters for more than half a million quasars. This set defines a kinematically non-rotating reference frame in the optical domain. A subset of these quasars have accurate VLBI positions that allow the axes of the reference frame to be aligned with the International Celestial Reference System (ICRF) radio frame. Aims. We describe the astrometric and photometric properties of the quasars that were selected to represent the celestial reference frame of Gaia DR2 (Gaia-CRF2), and to compare the optical and radio positions for sources with accurate VLBI positions. Methods. Descriptive statistics are used to characterise the overall properties of the quasar sample. Residual rotation and orientation errors and large-scale systematics are quantified by means of expansions in vector spherical harmonics. Positional differences are calculated relative to a prototype version of the forthcoming ICRF3. Results. Gaia-CRF2 consists of the positions of a sample of 556 869 sources in Gaia DR2, obtained from a positional cross-match with the ICRF3-prototype and AllWISE AGN catalogues. The sample constitutes a clean, dense, and homogeneous set of extragalactic point sources in the magnitude range G ≃ 16 to 21 mag with accurately known optical positions. The median positional uncertainty is 0.12 mas for G < 18 mag and 0.5 mas at G = mag. Large-scale systematics are estimated to be in the range 20 to 30 μas. The accuracy claims are supported by the parallaxes and proper motions of the quasars in Gaia DR2. The optical positions for a subset of 2820 sources in common with the ICRF3-prototype show very good overall agreement with the radio positions, but several tens of sources have significantly discrepant positions. Conclusions. Based on less than 40% of the data expected from the nominal Gaia mission, Gaia-CRF2 is the first realisation of a non-rotating global optical reference frame that meets the ICRS prescriptions, meaning that it is built only on extragalactic sources. Its accuracy matches the current radio frame of the ICRF, but the density of sources in all parts of the sky is much higher, except along the Galactic equator.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
María José Martínez Usó ◽  
Francisco J. Marco Castillo ◽  
José Antonio López Ortí

From 1998, the International Astronomical Union (IAU) adopted a new Celestial Reference System: the International Celestial Reference System (ICRS). The first optical materialization was the Hipparcos catalogue, defining the Hipparcos Celestial Reference Frame (HCRF). The compilation of subsequent radio sources catalogues culminated in the current representation of the ICRF, the ICRF2 catalogue that is not sufficiently dense to cover all astrometrical purposes. Linking Hipparcos and ICRF2 is essential to uniformize the reference regardless of whether it is visible (HCRF) or not (ICRF). Many working groups provide their own complementary catalogs, some of whose sources are also in the ICRF2, with different reduction processes for positions. The point is that they provide information in more than one reference for a small number of objects. Some of these projects have been used by us to study the Hipparcos-ICRF2 differences: a certain number of couples of catalogs can be interrelated using a set of parameters. With these couples, we build a closed cycle with the same ending and departure couple. The parameters obtained from each couple affect the next; thus we have an iterative process whose fixed point is the solution that stabilizes it, providing a preliminary link for Hipparcos-ICRF2.


Sign in / Sign up

Export Citation Format

Share Document