scholarly journals Gaia Data Release 2

2018 ◽  
Vol 616 ◽  
pp. A2 ◽  
Author(s):  
L. Lindegren ◽  
J. Hernández ◽  
A. Bombrun ◽  
S. Klioner ◽  
U. Bastian ◽  
...  

Context. Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. Aims. We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these resultsperformed within the astrometry task. Methods. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. These data were calculated in two steps. First, the satellite attitude and the astrometric calibration parameters of the CCDs were obtained in an astrometric global iterative solution for 16 million selected sources, using about 1% of the input data. This primary solution was tied to the extragalactic International Celestial Reference System (ICRS) by means of quasars. The resulting attitude and calibration were then used to calculate the astrometric parameters of all the sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion. Results. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G < 14 mag) sources, 0.1 mas at G = 17 mag, and 0.7 masat G = 20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas yr−1, respectively.The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas yr−1. From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas yr−1 in proper motion are seen on small (< 1 deg) and intermediate (20 deg) angular scales. Important statistics and information for the users of the Gaia DR2 astrometry are given in the appendices.

2018 ◽  
Vol 616 ◽  
pp. A16 ◽  
Author(s):  
A. C. Lanzafame ◽  
E. Distefano ◽  
S. Messina ◽  
I. Pagano ◽  
A. F. Lanza ◽  
...  

Context. Amongst the ≈5 × 105 sources identified as variable stars in Gaia Data Release 2 (DR2), 26% are rotational modulation variable candidates of the BY Dra class. Gaia DR2 provides their multi-band (G, GBP, and GRP) photometric time series collected by the European Space Agency spacecraft Gaia during the first 22 months of operations as well as the essential parameters related to their flux modulation induced by surface inhomogeneities and rotation. Aims. We developed methods to identify the BY Dra variable candidates and to infer their variability parameters. Methods. BY Dra candidates were pre-selected from their position in the Hertzsprung–Russel diagram, built from Gaia parallaxes, G magnitudes, and (GBP − GRP) colours. Since the time evolution of the stellar active region can disrupt the coherence of the signal, segments not much longer than their expected evolution timescale were extracted from the entire photometric time series, and period search algorithms were applied to each segment. For the Gaia DR2, we selected sources with similar periods in at least two segments as candidate BY Dra variables. Results were further filtered considering the time-series phase coverage and the expected approximate light-curve shape. Results. Gaia DR2 includes rotational periods and modulation amplitudes of 147 535 BY Dra candidates. The data unveil the existence of two populations with distinctive period and amplitude distributions. The sample covers 38% of the whole sky when divided into bins (HEALPix) of ≈0.84 square degrees, and we estimate that this represents 0.7–5% of all BY Dra stars potentially detectable with Gaia. Conclusions. The preliminary data contained in Gaia DR2 illustrate the vast and unique information that the mission is going to provide on stellar rotation and magnetic activity. This information, complemented by the exquisite Gaia parallaxes, proper motions, and astrophysical parameters, is opening new and unique perspectives for our understanding of the evolution of stellar angular momentum and dynamo action.


2018 ◽  
Vol 616 ◽  
pp. A13 ◽  
Author(s):  
◽  
F. Spoto ◽  
P. Tanga ◽  
F. Mignard ◽  
J. Berthier ◽  
...  

Context. The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center repository. Positions are provided for each Gaia observation at CCD level. As additional information, complementary to astrometry, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations. Aims. We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality. Methods. To exploit the main data product for the solar system in Gaia DR2, which is the epoch astrometry of asteroids, it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The role of both random and systematic errors is described. The distribution of residuals allowed us to identify possible contaminants in the data set (such as stars). Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP). Results. The overall astrometric performance is close to the expectations, with an optimal range of brightness G ~ 12 − 17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G ~ 12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by comparisons to the archive data and by preliminary tests on the detection of subtle non-gravitational effects.


Author(s):  
Ni Li ◽  
Paolo Arguelles ◽  
Kevin Chaput ◽  
Stephen L. Kenan ◽  
Salla Kim ◽  
...  

Solar sailing is a new satellite propulsion technology using radiation pressure exerted by sunlight on a large mirrored surface. Since it does not need propellants, it is increasingly being considered by both the European Space Agency and the National Aeronautics and Space Administration for future science missions. An attitude control system is essential for a sail craft to maintain a desired orientation. IKAROS, launched in 2010, practically proved the possibility of using a solar sail as a propulsion system. However, it also showed the current sail orientation system could change the attitude very slowly, about 1 degree per day. In contrast to the existing single solar sail design, a new distributed four-sail configuration is proposed in this paper and the coordinated motion of the four sails is used to control the attitude pointing of a satellite. The feasibility and efficiency of this proposed design were assessed and concluded that it is possible to steer a CubeSat up to 1 degree in 60 seconds for either the roll or pitch axes.


2018 ◽  
Vol 17 (1) ◽  
pp. 11-23
Author(s):  
Nidhi Sabu ◽  
Thomaskutty Francis ◽  
Arun Roy ◽  
Sreeja S Kartha

In this paper we attempt to study an ongoing astrometry mission of the European Space Agency (ESA), named Gaia, whose aim is to make the largest and most precise three-dimensional map of our Galaxy. We present the scientific goals of Gaia and give a brief description of the spacecraft. We also present a preliminary analysis of comparing distance estimates of Be stars from the first Gaia data release, Gaia DR1, and Hipparcos mission. From our analysis, we confirm that Gaia stands out as a promising mission in terms of the distance measurements when compared to Hipparcos, particularly for distances greater than 1 kpc.


1980 ◽  
Vol 56 ◽  
pp. 341-348
Author(s):  
C. A. Murray

Abstract:The HIPPARCOS Satellite, to be launched by the European Space Agency, will provide a stellar reference frame over the whole celestial sphere with an average accuracy of ± 0002 in each coordinate and component of annual proper motion, for some 100,000 stars.The origin of coordinates will be arbitrary. Absolute rotation of the system of proper motions can be obtained by measuring quasars relative to stars in the HIPPARCOS catalogue, either with the NASA Space Telescope or by conventional ground based astrometric observations.


2018 ◽  
Vol 617 ◽  
pp. A138 ◽  
Author(s):  
Michael Weiler

Context. The European Space Agency mission Gaia has published, with its second data release (DR2), a catalogue of photometric measurements for more than 1.3 billion astronomical objects in three passbands. The precision of the measurements in these passbands, denoted G, GBP, and GRP, reach down to the milli-magnitude level. The scientific exploitation of this data set requires precise knowledge of the response curves of the three passbands. Aims. This work aims to improve the exploitation of the photometric data by deriving an improved set of response curves for the three passbands, allowing for an accurate computation of synthetic Gaia photometry. Methods. This is achieved by formulating the problem of passband determination in a functional analytic formalism, and linking the photometric measurements with four observational, one empirical, and one theoretical spectral library. Results. We present response curves for G, GBP, and GRP that differ from the previously published curves, and which provide a better agreement between synthetic Gaia photometry and Gaia observations.


2020 ◽  
Vol 499 (3) ◽  
pp. 4040-4053
Author(s):  
Tatiana Muraveva ◽  
Gisella Clementini ◽  
Alessia Garofalo ◽  
Felice Cusano

ABSTRACT We present a catalogue of 285 RR Lyrae stars (RRLs) in the Draco dwarf spheroidal (dSph) galaxy, obtained by combining data from a number of different surveys including the Data Release 2 (DR2) of the European Space Agency cornerstone mission Gaia. We have determined individual distances to the RRLs in our sample using for the first time a Gaia G-band luminosity–metallicity relation ($M_{G}\small{--}{\rm [Fe/H]}$) and study the structure of the Draco dSph as traced by its RRL population. We find that the RRLs located in the western/south-western region of Draco appear to be closer to us, which may be a clue of interaction between Draco and the Milky Way. The average distance modulus of Draco measured with the RRLs is $\mu =19.53\pm 0.07$ mag, corresponding to a distance of $80.5\pm 2.6$ kpc, in good agreement with previous determinations in the literature. Based on the pulsation properties of the RRLs, we confirm the Oosterhoff-intermediate nature of Draco. We present an additional sample of 41 candidate RRLs in Draco, which we selected from the Gaia DR2 catalogue based on the uncertainty of their G-band magnitudes. Additional epoch data that will become available in the Gaia Data Release 3 will help to confirm whether these candidates are bona fide Draco RRLs.


Author(s):  
Claudio Miccoli ◽  
Alessandro Turchi ◽  
Pierre Schrooyen ◽  
Domenic D’Ambrosio ◽  
Thierry Magin

AbstractThis work deals with the analysis of the cork P50, an ablative thermal protection material (TPM) used for the heat shield of the qarman Re-entry CubeSat. Developed for the European Space Agency (ESA) at the von Karman Institute (VKI) for Fluid Dynamics, qarman is a scientific demonstrator for Aerothermodynamic Research. The ability to model and predict the atypical behavior of the new cork-based materials is considered a critical research topic. Therefore, this work is motivated by the need to develop a numerical model able to respond to this demand, in preparation to the post-flight analysis of qarman. This study is focused on the main thermal response phenomena of the cork P50: pyrolysis and swelling. Pyrolysis was analyzed by means of the multi-physics Computational Fluid Dynamics (CFD) code argo, developed at Cenaero. Based on a unified flow-material solver, the Volume Averaged Navier–Stokes (VANS) equations were numerically solved to describe the interaction between a multi-species high enthalpy flow and a reactive porous medium, by means of a high-order Discontinuous Galerkin Method (DGM). Specifically, an accurate method to compute the pyrolysis production rate was implemented. The modeling of swelling was the most ambitious task, requiring the development of a physical model accounting for this phenomenon, for the purpose of a future implementation within argo. A 1D model was proposed, mainly based on an a priori assumption on the swelling velocity and the resolution of a nonlinear advection equation, by means of a Finite Difference Method (FDM). Once developed, the model was successfully tested through a matlab code, showing that the approach is promising and thus opening the way to further developments.


2019 ◽  
Vol 9 (1) ◽  
pp. 111-126
Author(s):  
A. F. Purkhauser ◽  
J. A. Koch ◽  
R. Pail

Abstract The GRACE mission has demonstrated a tremendous potential for observing mass changes in the Earth system from space for climate research and the observation of climate change. Future mission should on the one hand extend the already existing time series and also provide higher spatial and temporal resolution that is required to fulfil all needs placed on a future mission. To analyse the applicability of such a Next Generation Gravity Mission (NGGM) concept regarding hydrological applications, two GRACE-FO-type pairs in Bender formation are analysed. The numerical closed loop simulations with a realistic noise assumption are based on the short arc approach and make use of the Wiese approach, enabling a self-de-aliasing of high-frequency atmospheric and oceanic signals, and a NRT approach for a short latency. Numerical simulations for future gravity mission concepts are based on geophysical models, representing the time-variable gravity field. First tests regarding the usability of the hydrology component contained in the Earth System Model (ESM) by the European Space Agency (ESA) for the analysis regarding a possible flood monitoring and detection showed a clear signal in a third of the analysed flood cases. Our analysis of selected cases found that detection of floods was clearly possible with the reconstructed AOHIS/HIS signal in 20% of the tested examples, while in 40% of the cases a peak was visible but not clearly recognisable.


Sign in / Sign up

Export Citation Format

Share Document