scholarly journals Correction to: Stationary and Nonstationary Ion and Water Flux Interactions in Kidney Proximal Tubule: Mathematical Analysis of Isosmotic Transport by a Minimalistic Model

Author(s):  
Erik Hviid Larsen ◽  
Jens Nørkær Sørensen

Xenobiotica ◽  
2021 ◽  
pp. 1-11
Author(s):  
Stacey M. Tuey ◽  
Amandla Atilano-Roque ◽  
Georgia Charkoftaki ◽  
Joshua M. Thurman ◽  
Thomas D. Nolin ◽  
...  


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Inès Dufour ◽  
Alexis Werion ◽  
Leila Belkhir ◽  
Anastazja Wisniewska ◽  
Marie Perrot ◽  
...  

Abstract Background The severity of coronavirus disease 2019 (COVID-19) is highly variable between individuals, ranging from asymptomatic infection to critical disease with acute respiratory distress syndrome requiring mechanical ventilation. Such variability stresses the need for novel biomarkers associated with disease outcome. As SARS-CoV-2 infection causes a kidney proximal tubule dysfunction with urinary loss of uric acid, we hypothesized that low serum levels of uric acid (hypouricemia) may be associated with severity and outcome of COVID-19. Methods In a retrospective study using two independent cohorts, we investigated and validated the prevalence, kinetics and clinical correlates of hypouricemia among patients hospitalized with COVID-19 to a large academic hospital in Brussels, Belgium. Survival analyses using Cox regression and a competing risk approach assessed the time to mechanical ventilation and/or death. Confocal microscopy assessed the expression of urate transporter URAT1 in kidney proximal tubule cells from patients who died from COVID-19. Results The discovery and validation cohorts included 192 and 325 patients hospitalized with COVID-19, respectively. Out of the 517 patients, 274 (53%) had severe and 92 (18%) critical COVID-19. In both cohorts, the prevalence of hypouricemia increased from 6% upon admission to 20% within the first days of hospitalization for COVID-19, contrasting with a very rare occurrence (< 1%) before hospitalization for COVID-19. During a median (interquartile range) follow-up of 148 days (50–168), 61 (12%) patients required mechanical ventilation and 93 (18%) died. In both cohorts considered separately and in pooled analyses, low serum levels of uric acid were strongly associated with disease severity (linear trend, P < 0.001) and with progression to death and respiratory failure requiring mechanical ventilation in Cox (adjusted hazard ratio 5.3, 95% confidence interval 3.6–7.8, P < 0.001) or competing risks (adjusted hazard ratio 20.8, 95% confidence interval 10.4–41.4, P < 0.001) models. At the structural level, kidneys from patients with COVID-19 showed a major reduction in urate transporter URAT1 expression in the brush border of proximal tubules. Conclusions Among patients with COVID-19 requiring hospitalization, low serum levels of uric acid are common and associate with disease severity and with progression to respiratory failure requiring invasive mechanical ventilation.



2020 ◽  
Vol 48 (12) ◽  
pp. 1303-1311
Author(s):  
Tom T.G. Nieskens ◽  
Mikael Persson ◽  
Edward J. Kelly ◽  
Anna-Karin Sjögren


1986 ◽  
Vol 250 (4) ◽  
pp. F680-F689 ◽  
Author(s):  
K. Bomsztyk ◽  
F. S. Wright

The effects of changes in transepithelial water flux (Jv) on sodium, chloride, calcium, and potassium transport by the proximal convoluted tubule were examined by applying a microperfusion technique to surface segments in kidneys of anesthetized rats. Perfusion solutions were prepared with ion concentrations similar to those in fluid normally present in the later parts of the proximal tubule. Osmolality of the perfusate was adjusted with mannitol. With no mannitol in the perfusates, net fluid absorption was observed. Addition of increasing amounts of mannitol first reduced Jv to zero and then reversed net fluid flux. At the maximal rates of fluid absorption, net absorption of Na, Cl, Ca, and K was observed. When Jv was reduced to zero, Na, Cl, and Ca absorption were reduced and K entered the lumen. Na, Cl, and Ca secretion occurred in association with the highest rates of net fluid secretion. The lumen-positive transepithelial potential progressively increased as the net fluid flux was reduced to zero and then reversed. The results demonstrate that changes in net water flux can affect Na, Cl, Ca, and K transport by the proximal convoluted tubule of the rat kidney. These changes in net ion fluxes are not entirely accounted for by changes in bulk-phase transepithelial electrochemical gradients.



1978 ◽  
Vol 235 (6) ◽  
pp. F638-F648 ◽  
Author(s):  
S. R. Thomas ◽  
D. C. Mikulecky

This network thermodynamic model of kidney proximal tubule epithelium treats coupled salt and water flow across each component membrane of the epithelium. We investigate the effects of various relative internal parameter values on the concentration of transepithelial flow, the concentrations in the cell and interspace, and the distribution of flows between cellular and paracellular routes. Best fit is obtaine if the apical and basolateral membrane reflection coefficients (or) are equal. The measured transepithelial filtration coefficient, Lp, is a function not only of the component Lps but also of the internal concentrations, or's, and permeabilities. For the given system topology (i.e., connectedness), parameters of component membranes must be within a narrow range to be consistent with experimental results. The dependence of the concentration of transported fluid on the balance between the solute pump rate and the transepithelial volume flow driving force is shown. This has implications for the effects of peritubular or lumen oncotic pressure on salt and water flow. With Appendix B of this paper and a user's guide for a circuit-simulation package (e.g., SPICE or PCAP) the reader can perform similar network analyses of transport models himself.



2003 ◽  
Vol 285 (3) ◽  
pp. C608-C617 ◽  
Author(s):  
Snezana Petrovic ◽  
Liyun Ma ◽  
Zhaohui Wang ◽  
Manoocher Soleimani

SLC26A6 (or putative anion transporter 1, PAT1) is located on the apical membrane of mouse kidney proximal tubule and mediates [Formula: see text] exchange in in vitro expression systems. We hypothesized that PAT1 along with a [Formula: see text] exchange is present in apical membranes of rat kidney proximal tubules. Northern hybridizations indicated the exclusive expression of SLC26A6 (PAT1 or CFEX) in rat kidney cortex, and immunocytochemical staining localized SLC26A6 on the apical membrane of proximal tubules, with complete prevention of the labeling with the preadsorbed serum. To examine the functional presence of apical [Formula: see text] exchanger, proximal tubules were isolated, microperfused, loaded with the pH-sensitive dye BCPCF-AM, and examined by digital ratiometric imaging. The pH of the perfusate and bath was kept at 7.4. Buffering capacity was measured, and transport rates were calculated as equivalent base flux. The results showed that in the presence of basolateral DIDS (to inhibit [Formula: see text] cotransporter 1) and apical EIPA (to inhibit Na+/H+ exchanger 3), the magnitude of cell acidification in response to addition of luminal Cl– was ∼5.0-fold higher in the presence than in the absence of [Formula: see text]. The Cl–-dependent base transport was inhibited by ∼61% in the presence of 0.5 mM luminal DIDS. The presence of physiological concentrations of oxalate in the lumen (200 μM) did not affect the [Formula: see text] exchange activity. These results are consistent with the presence of SLC26A6 (PAT1) and [Formula: see text] exchanger activity in the apical membrane of rat kidney proximal tubule. We propose that SLC26A6 is likely responsible for the apical [Formula: see text] (and Cl–/OH–) exchanger activities in kidney proximal tubule.



1990 ◽  
Vol 258 (3) ◽  
pp. F612-F626 ◽  
Author(s):  
A. M. Weinstein

A nonelectrolyte model of proximal tubule epithelium has been extended by the inclusion of a compliant tight junction. Here "compliance" signifies that both the junctional salt and water permeability increase and the salt reflection coefficient decreases in response to small pressure differences from lateral interspace to tubule lumen. In previous models of rat proximal tubule, there has been virtually no sensitivity of isotonic salt transport to changes in peritubular oncotic force. With the inclusion of junctional compliance, decreases in peritubular protein can open the junction and produce a secretory salt flux. Thus the model can represent the "backflux hypothesis," as it was originally put forth (J. E. Lewy and E. E. Windhager, Am. J. Physiol. 214: 943-954, 1968). Additional calculations, simulating a tight junction with negligible water permeability, reveal that the quantitative impact of peritubular protein can be realized whether or not there is substantial junctional water flux. The epithelial model of proximal tubule has also been incorporated into a model of the proximal nephron, complete with glomerulus, peritubular capillary, and interstitium. The interstitial compartment is well mixed and interstitial pressure and osmolality are determined iteratively to achieve balance between tubule reabsorption and capillary uptake. For this model, two domains of operation are identified. When interstitial pressures are low, junctions are closed, and filtration fraction has no effect on proximal reabsorption. When interstitial pressures are relatively elevated, epithelial junctions are open, and proximal salt reabsorption changes in proportion to changes in filtration fraction. In neither domain, however, does the model tubule augment salt flux with isolated increases in luminal flow rate (at constant filtration fraction). The absence of a separate effect of tubule fluid flow on salt transport precludes perfect glomerulotubular balance.



1983 ◽  
Vol 224 (2) ◽  
pp. 555-567 ◽  
Author(s):  
Dorie W. Schwertz ◽  
Jeffrey I. Kreisberg ◽  
Manjeri A. Venkatachalam


Sign in / Sign up

Export Citation Format

Share Document