Ligands and Signaling of Mas-Related G Protein-Coupled Receptor-X2 in Mast Cell Activation

2020 ◽  
Author(s):  
Yan-Ni Mi ◽  
Na-Na Ping ◽  
Yong-Xiao Cao
2017 ◽  
Vol 49 ◽  
pp. 6-12 ◽  
Author(s):  
Yangyang Yu ◽  
Yuanyuan Zhang ◽  
Yarui Zhang ◽  
Yihong Lai ◽  
Wenwen Chen ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1033
Author(s):  
Mukesh Kumar ◽  
Karthi Duraisamy ◽  
Billy Kwok Chong CHOW

Mas-related G-protein coupled receptor member X2 (MRGPRX2) is a class A GPCR expressed on mast cells. Mast cells are granulated tissue-resident cells known for host cell response, allergic response, and vascular homeostasis. Immunoglobulin E receptor (FcεRI)-mediated mast cell activation is a well-studied and recognized mechanism of allergy and hypersensitivity reactions. However, non-IgE-mediated mast cell activation is less explored and is not well recognized. After decades of uncertainty, MRGPRX2 was discovered as the receptor responsible for non-IgE-mediated mast cells activation. The puzzle of non-IgE-mediated pseudo-allergic reaction is unlocked by MRGPRX2, evidenced by a plethora of reported endogenous and exogenous MRGPRX2 agonists. MRGPRX2 is exclusively expressed on mast cells and exhibits varying affinity for many molecules such as antimicrobial host defense peptides, neuropeptides, and even US Food and Drug Administration-approved drugs. The discovery of MRGPRX2 has changed our understanding of mast cell biology and filled the missing link of the underlying mechanism of drug-induced MC degranulation and pseudo-allergic reactions. These non-canonical characteristics render MRGPRX2 an intriguing player in allergic diseases. In the present article, we reviewed the emerging role of MRGPRX2 as a non-IgE-mediated mechanism of mast cell activation in pseudo-allergic reactions. We have presented an overview of mast cells, their receptors, structural insight into MRGPRX2, MRGPRX2 agonists and antagonists, the crucial role of MRGPRX2 in pseudo-allergic reactions, current challenges, and the future research direction.


Blood ◽  
2020 ◽  
Vol 135 (15) ◽  
pp. 1232-1243 ◽  
Author(s):  
Kodandaram Pillarisetti ◽  
Suzanne Edavettal ◽  
Mark Mendonça ◽  
Yingzhe Li ◽  
Mark Tornetta ◽  
...  

Abstract T-cell–mediated approaches have shown promise in myeloma treatment. However, there are currently a limited number of specific myeloma antigens that can be targeted, and multiple myeloma (MM) remains an incurable disease. G-protein–coupled receptor class 5 member D (GPRC5D) is expressed in MM and smoldering MM patient plasma cells. Here, we demonstrate that GPRC5D protein is present on the surface of MM cells and describe JNJ-64407564, a GPRC5DxCD3 bispecific antibody that recruits CD3+ T cells to GPRC5D+ MM cells and induces killing of GPRC5D+ cells. In vitro, JNJ-64407564 induced specific cytotoxicity of GPRC5D+ cells with concomitant T-cell activation and also killed plasma cells in MM patient samples ex vivo. JNJ-64407564 can recruit T cells and induce tumor regression in GPRC5D+ MM murine models, which coincide with T-cell infiltration at the tumor site. This antibody is also able to induce cytotoxicity of patient primary MM cells from bone marrow, which is the natural site of this disease. GPRC5D is a promising surface antigen for MM immunotherapy, and JNJ-64407564 is currently being evaluated in a phase 1 clinical trial in patients with relapsed or refractory MM (NCT03399799).


2011 ◽  
Vol 187 (3) ◽  
pp. 1486-1495 ◽  
Author(s):  
Giorgio Giannattasio ◽  
Shin Ohta ◽  
Joshua R. Boyce ◽  
Wei Xing ◽  
Barbara Balestrieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document