An Approach to Vision-Based Person Detection in Robotic Applications

Author(s):  
Carlos Castillo ◽  
Carolina Chang
2014 ◽  
Author(s):  
Jamie L. Gorman ◽  
Kent D. Harber ◽  
Maggie Shiffrar ◽  
Karen Quigley
Keyword(s):  

2019 ◽  
Vol 2019 (11) ◽  
pp. 268-1-268-9
Author(s):  
Herman G.J Groot ◽  
Egor Bondarev ◽  
Peter H.N. de With

Author(s):  
Preecha Yupapin ◽  
Amiri I. S. ◽  
Ali J. ◽  
Ponsuwancharoen N. ◽  
Youplao P.

The sequence of the human brain can be configured by the originated strongly coupling fields to a pair of the ionic substances(bio-cells) within the microtubules. From which the dipole oscillation begins and transports by the strong trapped force, which is known as a tweezer. The tweezers are the trapped polaritons, which are the electrical charges with information. They will be collected on the brain surface and transport via the liquid core guide wave, which is the mixture of blood content and water. The oscillation frequency is called the Rabi frequency, is formed by the two-level atom system. Our aim will manipulate the Rabi oscillation by an on-chip device, where the quantum outputs may help to form the realistic human brain function for humanoid robotic applications.


2020 ◽  
Vol 71 (7) ◽  
pp. 868-880
Author(s):  
Nguyen Hong-Quan ◽  
Nguyen Thuy-Binh ◽  
Tran Duc-Long ◽  
Le Thi-Lan

Along with the strong development of camera networks, a video analysis system has been become more and more popular and has been applied in various practical applications. In this paper, we focus on person re-identification (person ReID) task that is a crucial step of video analysis systems. The purpose of person ReID is to associate multiple images of a given person when moving in a non-overlapping camera network. Many efforts have been made to person ReID. However, most of studies on person ReID only deal with well-alignment bounding boxes which are detected manually and considered as the perfect inputs for person ReID. In fact, when building a fully automated person ReID system the quality of the two previous steps that are person detection and tracking may have a strong effect on the person ReID performance. The contribution of this paper are two-folds. First, a unified framework for person ReID based on deep learning models is proposed. In this framework, the coupling of a deep neural network for person detection and a deep-learning-based tracking method is used. Besides, features extracted from an improved ResNet architecture are proposed for person representation to achieve a higher ReID accuracy. Second, our self-built dataset is introduced and employed for evaluation of all three steps in the fully automated person ReID framework.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 966 ◽  
Author(s):  
Marco Costanzo ◽  
Giuseppe De Maria ◽  
Ciro Natale ◽  
Salvatore Pirozzi

This paper presents the design and calibration of a new force/tactile sensor for robotic applications. The sensor is suitably designed to provide the robotic grasping device with a sensory system mimicking the human sense of touch, namely, a device sensitive to contact forces, object slip and object geometry. This type of perception information is of paramount importance not only in dexterous manipulation but even in simple grasping tasks, especially when objects are fragile, such that only a minimum amount of grasping force can be applied to hold the object without damaging it. Moreover, sensing only forces and not moments can be very limiting to securely grasp an object when it is grasped far from its center of gravity. Therefore, the perception of torsional moments is a key requirement of the designed sensor. Furthermore, the sensor is also the mechanical interface between the gripper and the manipulated object, therefore its design should consider also the requirements for a correct holding of the object. The most relevant of such requirements is the necessity to hold a torsional moment, therefore a soft distributed contact is necessary. The presence of a soft contact poses a number of challenges in the calibration of the sensor, and that is another contribution of this work. Experimental validation is provided in real grasping tasks with two sensors mounted on an industrial gripper.


Robotics ◽  
1985 ◽  
Vol 1 (3) ◽  
pp. 155-158
Author(s):  
Yee Meng Yew
Keyword(s):  

Author(s):  
Zewen Xu ◽  
Zheng Rong ◽  
Yihong Wu

AbstractIn recent years, simultaneous localization and mapping in dynamic environments (dynamic SLAM) has attracted significant attention from both academia and industry. Some pioneering work on this technique has expanded the potential of robotic applications. Compared to standard SLAM under the static world assumption, dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly. Therefore, dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments. Additionally, to meet the demands of some high-level tasks, dynamic SLAM can be integrated with multiple object tracking. This article presents a survey on dynamic SLAM from the perspective of feature choices. A discussion of the advantages and disadvantages of different visual features is provided in this article.


Sign in / Sign up

Export Citation Format

Share Document