A Real-Time Message Scheduling Scheme Based on Optimal Earliest Deadline First Policy for Dual Channel Wireless Networks

Author(s):  
Junghoon Lee ◽  
Mikyung Kang ◽  
Gyung-Leen Park ◽  
Ikchan Kim ◽  
Cheolmin Kim ◽  
...  
2014 ◽  
Author(s):  
Abhilash Thekkilakattil ◽  
Sanjoy Baruah ◽  
Radu Dobrin ◽  
Sasikumar Punnekkat

Author(s):  
Apurva Shah ◽  
Ketan Kotecha

The Ant Colony Optimization (ACO) algorithms are computational models inspired by the collective foraging behavior of ants. The ACO algorithms provide inherent parallelism, which is very useful in multiprocessor environments. They provide balance between exploration and exploitation along with robustness and simplicity of individual agent. In this paper, ACO based dynamic scheduling algorithm for homogeneous multiprocessor real-time systems is proposed. The results obtained during simulation are measured in terms of Success Ratio (SR) and Effective CPU Utilization (ECU) and compared with the results of Earliest Deadline First (EDF) algorithm in the same environment. It has been observed that the proposed algorithm is very efficient in underloaded conditions and it performs very well during overloaded conditions also. Moreover, the proposed algorithm can schedule some typical instances successfully which are not possible to schedule using EDF algorithm.


Author(s):  
Tayyaba Bokhari ◽  
Sajjad Haider Shami ◽  
Farhan Haseeb

Over the past few decades, increased demand of highly sophisticated real-time applications with complex functionalities has directly led to exponentially increased power consumption and significantly elevated system temperatures. These elevated temperature and thermal variations present formidable challenges towards system reliability, performance, cooling cost and leakages. This article explores the thermal management strength of two fairness based algorithms, namely Proportional Fair (PFair) and Deadline Partitioning Fair (DP-Fair). In related literature, the introduction of fairness is often considered as a tool to achieve optimality in multiprocessor scheduling algorithms. This work shows that these algorithms bring about better thermal profile when compared with the commonly used Earliest Deadline First (EDF) algorithm in similar conditions both in uniprocessor and multiprocessor environments. A simulation is conducted for periodic task set model. The obtained results are encouraging and show that use of fairness based algorithms reduces the operating temperature, peak temperature, and thermal variations.


2019 ◽  
Vol 118 (4) ◽  
pp. 160
Author(s):  
G. Madhumita ◽  
G. Rajini ◽  
B. Subisha

In this paper, a new approach for energy minimization in energy harvesting real time systems has been investigated. Lifetime of a real time systems is depend upon its battery life.  Energy is a parameter by which the lifetime of system can be enhanced.  To work continuously and successively, energy harvesting is used as a regular source of energy. EDF (Earliest Deadline First) is a traditional real time tasks scheduling algorithm and DVS (Dynamic Voltage Scaling) is used for reducing energy consumption. In this paper, we propose an Energy Harvesting Earliest Deadline First (EH-EDF) scheduling algorithm for increasing lifetime of real time systems using DVS for reducing energy consumption and EDF for tasks scheduling with energy harvesting as regular energy supply. Our experimental results show that the proposed approach perform better to reduce energy consumption and increases the system lifetime as compared with existing approaches.  


2001 ◽  
Vol 11 (2) ◽  
pp. 332-378 ◽  
Author(s):  
Bogdan Doytchinov ◽  
John Lehoczky ◽  
Steven Shreve

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Rashmi Sharma ◽  
Nitin

In Real Time System, the achievement of deadline is the main target of every scheduling algorithm. Earliest Deadline First (EDF), Rate Monotonic (RM), and least Laxity First are some renowned algorithms that work well in their own context. As we know, there is a very common problem Domino's effect in EDF that is generated due to overloading condition (EDF is not working well in overloading situation). Similarly, performance of RM is degraded in underloading condition. We can say that both algorithms are complements of each other. Deadline missing in both events happens because of their utilization bounding strategy. Therefore, in this paper we are proposing a new scheduling algorithm that carries through the drawback of both existing algorithms. Joint EDF-RM scheduling algorithm is implemented in global scheduler that permits task migration mechanism in between processors in the system. In order to check the improved behavior of proposed algorithm we perform simulation. Results are achieved and evaluated in terms of Success Ratio (SR), Average CPU Utilization (ECU), Failure Ratio (FR), and Maximum Tardiness parameters. In the end, the results are compared with the existing (EDF, RM, and D_R_EDF) algorithms. It has been shown that the proposed algorithm performs better during overloading condition as well in underloading condition.


Sign in / Sign up

Export Citation Format

Share Document