Efficient Motion Search in Large Motion Capture Databases

Author(s):  
Yi Lin
2017 ◽  
Vol 13 (2) ◽  
pp. 155014771769608 ◽  
Author(s):  
Yejin Kim

Dynamic human movements such as dance are difficult to capture without using external markers due to the high complexity of a dancer’s body. This article introduces a marker-free motion capture and composition system for dance motion that uses multiple RGB and depth sensors. Our motion capture system utilizes a set of high-speed RGB and depth sensors to generate skeletal motion data from an expert dancer. During the motion acquisition process, a skeleton tracking method based on a particle filter is provided to estimate the motion parameters for each frame from a sequence of color images and depth features retrieved from the sensors. The expert motion data become archived in a database. The authoring methods in our composition system automate most of the motion editing processes for general users by providing an online motion search with an input posture and then performing motion synthesis on an arbitrary motion path. Using the proposed system, we demonstrate that various dance performances can be composed in an intuitive and efficient way on client devices such as tablets and kiosk PCs.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5224
Author(s):  
Songle Chen ◽  
Xuejian Zhao ◽  
Bingqing Luo ◽  
Zhixin Sun

Visual browse and exploration in motion capture data take resource acquisition as a human–computer interaction problem, and it is an essential approach for target motion search. This paper presents a progressive schema which starts from pose browse, then locates the interesting region and then switches to online relevant motion exploration. It mainly addresses three core issues. First, to alleviate the contradiction between the limited visual space and ever-increasing size of real-world database, it applies affinity propagation to numerical similarity measure of pose to perform data abstraction and obtains representative poses of clusters. Second, to construct a meaningful neighborhood for user browsing, it further merges logical similarity measures of pose with the weight quartets and casts the isolated representative poses into a structure of phylogenetic tree. Third, to support online motion exploration including motion ranking and clustering, a biLSTM-based auto-encoder is proposed to encode the high-dimensional pose context into compact latent space. Experimental results on CMU’s motion capture data verify the effectiveness of the proposed method.


2014 ◽  
Vol 556-562 ◽  
pp. 2944-2947 ◽  
Author(s):  
Na Lv ◽  
Yan Huang ◽  
Zhi Quan Feng ◽  
Jing Liang Peng

With the rapid development of motion capture technology, large motion capture databases are established. How to effectively retrieve the motions from huge amounts of motion data has become a hot topic in computer animation. In this paper, we give a survey on current motion capture data retrieval methods and point out some still existing problems at the end.


2011 ◽  
Vol 29 (supplement) ◽  
pp. 283-304 ◽  
Author(s):  
Timothy R. Brick ◽  
Steven M. Boker

Among the qualities that distinguish dance from other types of human behavior and interaction are the creation and breaking of synchrony and symmetry. The combination of symmetry and synchrony can provide complex interactions. For example, two dancers might make very different movements, slowing each time the other sped up: a mirror symmetry of velocity. Examining patterns of synchrony and symmetry can provide insight into both the artistic nature of the dance, and the nature of the perceptions and responses of the dancers. However, such complex symmetries are often difficult to quantify. This paper presents three methods – Generalized Local Linear Approximation, Time-lagged Autocorrelation, and Windowed Cross-correlation – for the exploration of symmetry and synchrony in motion-capture data as is it applied to dance and illustrate these with examples from a study of free-form dance. Combined, these techniques provide powerful tools for the examination of the structure of symmetry and synchrony in dance.


Author(s):  
Jonathan Kenneth Sinclair ◽  
Lindsay Bottoms

AbstractRecent epidemiological analyses in fencing have shown that injuries and pain linked specifically to fencing training/competition were evident in 92.8% of fencers. Specifically the prevalence of Achilles tendon pathology has increased substantially in recent years, and males have been identified as being at greater risk of Achilles tendon injury compared to their female counterparts. This study aimed to examine gender differences in Achilles tendon loading during the fencing lunge.Achilles tendon load was obtained from eight male and eight female club level epee fencers using a 3D motion capture system and force platform information as they completed simulated lunges. Independent t-tests were performed on the data to determine whether differences existed.The results show that males were associated with significantly greater Achilles tendon loading rates in comparison to females.This suggests that male fencers may be at greater risk from Achilles tendon pathology as a function of fencing training/ competition.


Sign in / Sign up

Export Citation Format

Share Document