scholarly journals A Flexible, Extensible Object Oriented Real-time Near Photorealistic Visualization System: The System Framework Design

2006 ◽  
pp. 563-579
Author(s):  
Anthony Jones ◽  
Dan Cornford
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Shanshan Liu ◽  
Yueli Feng ◽  
Xiaoqiu Wang ◽  
Pengyin Yan

This study develops a novel drilling 3D visualization solution based on WebGL, termed as WebDrillingViz, and introduces the system architecture design and software programming implementation. The software is part of the Engineering Technology Internet of Things (IoT) System, interfacing with other software, and also capable of direct hardware interfacing for data retrieval and system control. It is fully web-based, used real time, and used in RTOC (Real-Time Operating Center) of IoT system, which is a software system for drilling process remote monitor and decision. WebDrillingViz uses the most frontier HTML5 technology to realize a brand-new drilling 3D visualization system. The front end is designed in single-page application (SPA) mode and adopts technologies such as angular, bootstrap, and WebGL. The front-end uses single page application (SPA) mode, Angular, Bootstrap, WebGL and other technologies are used. The back-end data services provide data interface support for front-end visualization applications based on HTTP protocol which uses NodeJS, a lightweight development platform suitable for cloud platform, and Restify to realize a REST JSON API. Both sides are using the same object-oriented oriented development language—TypeScript. The front-end develops an easy-to-extend 3D visualization class library based on WebGL for drilling. It is encapsulated as Angular modularization to form an Angular component, which can be used standalone or integrated into other Angular applications. At the same time, the back-end microservice architecture combined with container and cloud technology is easy to maintain, deploy, and expand and has the advantages of being lightweight, cross-platform, flexible, and efficient. Using HTML5 standard and Bootstrap's responsive layout achieves cross-platform, which can support different operating systems and screen sizes. The system has better robustness and maintainability, thanks to the object-oriented and strong typing characteristics of TypeScript. Practical application shows that WebDrillingViz is efficient, capable of visualization of large drilling 3D scene, and compatible with mainstream devices, such as Windows, Linux, macOS, iOS, and Android. The use of open standards-based modern web technologies and data format enables a more lightweight and economical solution. WebGL, Angular, NodeJS, and TypeScript formed a powerful technology stack, which can be used as an excellent reference for other browser-based visualization development.


1997 ◽  
Vol 31 (3) ◽  
pp. 45-51
Author(s):  
Jianmin Hou ◽  
Xuandong Li ◽  
Xiaocong Fan ◽  
Guoliang Zheng
Keyword(s):  

Author(s):  
Soochan Hwang ◽  
Sang-Young Cho ◽  
Taehyung Wang ◽  
Phillip C.-Y. Sheu

This paper describes a 3-D visualization method based on the concept of characteristic views (CVs). The idea of characteristic views was derived based on the observation that the infinite possible views of a 3-D object can be grouped into a finite number of equivalence classes so that within each class all the views are isomorphic in the sense that they have the same line-junction graphs. To visualize the changes of scenes in real time, the BSP tree algorithm is known to be efficient in a static environment in which the viewpoint can be changed easily. However, if a scene consists of many objects and each object consists of many polygons, the time complexity involved in traversing a BSP tree increases rapidly so that the original BSP tree algorithm may not be efficient. The method proposed in this paper is object-oriented in the sense that, for all viewpoints, at the preprocessing stage the ordering for displaying the objects is determined. At run time, the objects are displayed based on a pre-calculated ordering according to the viewpoint. In addition, a CV is used as a basic 2-D projected image of a 3-D object.


2021 ◽  
Vol 7 (1) ◽  
pp. 43-48
Author(s):  
Agung Raharjo ◽  
Eko Kuncoro ◽  
Imam Azhar

Seiring dengan perkembangan teknologi komunikasi dan otomasi, pelaksanaan tugas militer dapat dibantu dengan mengembangkan alutsista militer. Salah satunya pengembangan robot tempur yang akan digunakan sebagai alat untuk membantu tugas operasi jarak jauh pada satuan tempur TNI AD. Pada robot tempur tersebut akan ditanamkan sistem komunikasi data berupa perintah kendali laju robot, perintah kendali senjata serang, dan sistem visualisasi yang dapat digunakan untuk mendukung pergerakan robot hingga mencapai sasaran yang ditentukan, serta sebagai sistem penginderaan jarak jauh robot tempur untuk memonitor area musuh yang akan ditinjau. Operator menggunakan sebuah joystick untuk mengendalikan robot tempur dan tablet Android untuk memantau dan mendeteksi arah sasaran. Penelitian ini membahas tentang perancangan pendeteksian sasaran tembak yang dapat dikendalikan dari jarak jauh. Metode yang digunakan adalah metode eksperimen berbasis PID. Penelitian ini berfokus pada pendeteksian sasaran tembak yang nantinya akan terhubung dengan Raspberry Pi 3, sehingga senjata dapat mendeteksi adanya sasaran tembak yang ada di dalam jangkauan sensor posisi. Hasil dari penelitian menunjukkan bahwa robot dapat dikendalikan dengan mudah menggunakan joystick dan secara real-time terlihat pada layar Android yang terpasang pada kontrol joystick tersebut. Selain itu, sistem juga dapat membedakan antara sasaran tembak dan objek yang bukan sasaran tembak. Penelitian ini diharapkan dapat mendukung tugas operasi personel TNI dalam menjalankan misinya dengan memanfaatkan robot tempur. Along with the development of communication and automation technology, the implementation of military duties can be assisted by developing military defense equipment. One of them is the development of a combat robot that will be used as a tool to assist the task of long-distance operations on the Army combat unit. In the combat robot, a data communication system will be implanted in the form of a robot rate control command, an attack weapon control command, and a visualization system that is used to support the robot's movement to reach the target specified as a combat robot's remote sensing system for monitoring enemy areas to be reviewed. The operator has used a joystick to control the combat robot and to detect the direction of the target can be monitored with an android tablet. This research discusses the design of the detection of target fire that can be controlled remotely. The method used is experimental based on PID. This research focused on detecting firing targets that will be connected with Raspberry Pi 3 so that the weapon can detect the presence of firing targets within the position sensor. The results of the research show that the robot can be easily controlled using a Joystick and in real-time visible on the Android screen mounted on the Joystick control, the system can distinguish between target shooting and non-target objects. This research is expected to support the operational duties of army personnel in carrying out their missions by utilizing combat robots.


2019 ◽  
Vol 25 (5) ◽  
pp. 948-971
Author(s):  
Kanana Ezekiel ◽  
Vassil Vassilev ◽  
Karim Ouazzane ◽  
Yogesh Patel

Purpose Changing scattered and dynamic business rules in business workflow systems has become a growing problem that hinders the use and configuration of workflow-based applications. There is a gap in the existing research studies which currently focus on solutions that are application specific, without accounting for the universal logical dependencies between the business rules and, as a result, do not support adaptation of the business rules in real time. The paper aims to discuss this issue. Design/methodology/approach To tackle the above problems, this paper adopts a bottom-up approach, which puts forward a component model of the business process workflows and then adds business rules which have clear logical semantics. This allows incremental development of the workflows and semantic indexing of the rules which govern them during the initial acquisition. Findings The paper introduces an event-driven model for development of business workflows which is purely logic-based and can be easily implemented using an object-oriented technology, together with a model of the business rules dependencies which supports incremental semantic indexing. It also proposes a two-level inference mechanism as a vehicle for controlling the business process execution and the process of adaptation of the business rules at real time based on propagating the dependencies. Research limitations/implications The framework is strictly logical and completely domain-independent. It allows to account both synchronous and asynchronous triggering events as well as both qualitative and quantitative description of the conditions of the rules. Although our primary interest is to apply the framework to the business processes typical in the construction industry we believe our approach has much wider potential due to its strictly logical formalization and domain independence. In fact it can be used to control any business processes where the execution is governed by rules. Practical implications The framework could be applied to both large business process modelling tasks and small but very dynamic business processes like the typical digital business processes found in online banking or e-Commerce. For example, it can be used for adjusting security policies by adding the capability to adapt automatically the access rights to account for additional resources and new channels of operation which can be very interesting ion both B2C and B2B applications. Social implications The potential scope of the impact of the research reported here is linked to the wide applicability of rule-based systems in business. Our approach makes it possible not only to control the execution of the processes, but also to identify problems in the control policies themselves from the point of view of their logical properties – consistency, redundancies and potential gaps in the logics. In addition to this, our approach not only increases the efficiency, but also provides flexibility for adaptation of the policies in real time and increases the security of the overall control which improves the overall quality of the automation. Originality/value The major achievement reported in this paper is the construction of a universal, strictly logic-based event-driven framework for business process modelling and control, which allows purely logical analysis and adaptation of the business rules governing the business workflows through accounting their dependencies. An added value is the support for object-oriented implementation and the incremental indexing which has been possible thanks to the bottom-up approach adopted in the construction of the framework.


Sign in / Sign up

Export Citation Format

Share Document