Agent-Based Context-Aware Ad Hoc Communication

Author(s):  
Mohamed Khedr ◽  
Ahmed Karmouch ◽  
Ramiro Liscano ◽  
Tom Gray
Keyword(s):  
Ad Hoc ◽  
2005 ◽  
Vol 33 (3-4) ◽  
pp. 305-318 ◽  
Author(s):  
I. G. Niemegeers ◽  
S. M. Heemstra De Groot
Keyword(s):  
Ad Hoc ◽  

2013 ◽  
Vol 5 (3) ◽  
pp. 311-330 ◽  
Author(s):  
Pablo Campillo-Sanchez ◽  
Emilio Serrano ◽  
Juan A. Botía

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Moustafa M. Nasralla ◽  
Iván García-Magariño ◽  
Jaime Lloret

The last decade has witnessed a steep growth in multimedia traffic due to real-time content delivery such as in online games and video conferencing. In some contexts, MANETs play a key role in the hyperconnectivity of everything in multimedia services. In this context, this work proposes a new scheduling approach based on context-aware mobile nodes for their connectivity. The contribution relies on reporting not only the locations of devices in the network but also their movement identified by sensors. In order to illustrate this approach, we have developed a novel agent-based simulator called MASEMUL for illustrating the proposed approach. The results show that a movement-aware scheduling strategy defined with the proposed approach has decreased the ratio of channel interruptions over another common strategy in mobile networks.


The number of deaths resulting from road accidents and mishaps has increased at an alarming rate over the years. Road transportation is the most popularly used means of transportation in developing countries like Nigeria and most of these road accidents are associated with reckless driving habits. Context-aware systems provide intelligent recommendations allowing digital devices to make correct and timely recommendations when required. Furthermore, in a Vehicular Ad-hoc Network (VANET), communication links between vehicles and roadside units are improved thus enabling vehicle and road safety. Hence, a non-intrusive driver behaviour detection system that incorporates context-aware monitoring features in VANET is proposed in this study. By making use of a one-dimensional highway (1D) road with one-way traffic movement and incorporating GSM technology, irregular actions (high speed, alcohol while driving, and pressure) exhibited by drivers are monitored and alerts are sent to other nearby vehicles and roadside units to avoid accidents. The proposed system adopted a real-time VANET prototype with three entities involved in the context-aware driver’s behaviour monitoring system namely, the driver, vehicle, and environment. The analytical tests with actual data set indicate that, when detected, the model measures the pace of the vehicle, the level of alcohol in the breath, and the driver's heart rate in-breath per minute (BPM). Therefore, it can be used as an appropriate model for the Context-aware driver’s monitoring system in VANET.


2021 ◽  
Vol 26 (6) ◽  
pp. 549-557
Author(s):  
Venkatasubramanian Srinivasan

Mobile Ad-Hoc Networks (MANETs) due to their reconfigurable nature are being integrated into new and futuristic knowledge such as Internet of Things (IoT), cloud, reconfigurable networks, etc. To attain such credibility of integration, the routing protocols associated with these mobile nodes have to connect, perform and facilitate routing that offers a high level of security and resistance to all possible threats and security issues that may emanate in the network. One of the solutions used to maintain network security is intrusion detection systems (IDSs). This article primarily emphasis on the network's susceptibility to a suction assault known as a black hole attack. The investigations about the employment of intelligent agents called Honeypot Agent-based detection scheme (HPAS) with Long-Short Term Memory (LSTM) in identifying such assaults. Hence, the proposed method is named HPAS-LSTM, where honeypots are roaming virtual software managers that create Route Request (RREQ) packets to attract and entrap black hole attackers. Extensive model results utilizing the ns-2 simulator are used to demonstrate the presence of the suggested detection technique. The simulation outcomes demonstrate that the suggested technique outperforms current black hole detection methods in terms of throughput (TH), packet loss rate (PLR), packet delivery ratio (PDR), and total network delay (TND).


Author(s):  
Axel Bürkle ◽  
Wilmuth Müller ◽  
Uwe Pfirrmann ◽  
Nikolaos Dimakis ◽  
John Soldatos ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document