Quantifying Small Changes in Brain Ventricular Volume Using Non-rigid Registration

Author(s):  
Mark Holden ◽  
Julia A. Schnabel ◽  
Derek L. G. Hill
2020 ◽  
Vol 26 (5) ◽  
pp. 517-524
Author(s):  
Noah S. Cutler ◽  
Sudharsan Srinivasan ◽  
Bryan L. Aaron ◽  
Sharath Kumar Anand ◽  
Michael S. Kang ◽  
...  

OBJECTIVENormal percentile growth charts for head circumference, length, and weight are well-established tools for clinicians to detect abnormal growth patterns. Currently, no standard exists for evaluating normal size or growth of cerebral ventricular volume. The current standard practice relies on clinical experience for a subjective assessment of cerebral ventricular size to determine whether a patient is outside the normal volume range. An improved definition of normal ventricular volumes would facilitate a more data-driven diagnostic process. The authors sought to develop a growth curve of cerebral ventricular volumes using a large number of normal pediatric brain MR images.METHODSThe authors performed a retrospective analysis of patients aged 0 to 18 years, who were evaluated at their institution between 2009 and 2016 with brain MRI performed for headaches, convulsions, or head injury. Patients were excluded for diagnoses of hydrocephalus, congenital brain malformations, intracranial hemorrhage, meningitis, or intracranial mass lesions established at any time during a 3- to 10-year follow-up. The volume of the cerebral ventricles for each T2-weighted MRI sequence was calculated with a custom semiautomated segmentation program written in MATLAB. Normal percentile curves were calculated using the lambda-mu-sigma smoothing method.RESULTSVentricular volume was calculated for 687 normal brain MR images obtained in 617 different patients. A chart with standardized growth curves was developed from this set of normal ventricular volumes representing the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles. The charted data were binned by age at scan date by 3-month intervals for ages 0–1 year, 6-month intervals for ages 1–3 years, and 12-month intervals for ages 3–18 years. Additional percentile values were calculated for boys only and girls only.CONCLUSIONSThe authors developed centile estimation growth charts of normal 3D ventricular volumes measured on brain MRI for pediatric patients. These charts may serve as a quantitative clinical reference to help discern normal variance from pathologic ventriculomegaly.


2010 ◽  
Vol 36 (1) ◽  
pp. 179-183
Author(s):  
Xiang-Bo LIN ◽  
Tian-Shuang QIU ◽  
Su RUAN ◽  
NICOLIER Frédéric

2019 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Abdosalam attaleb ◽  
Mahmoud El-Menshawy ◽  
Mohammad AL-Daydamony ◽  
Ahmed El-damanhory

2021 ◽  
Vol 68 ◽  
pp. 102691
Author(s):  
Jinghua Xu ◽  
Mingzhe Tao ◽  
Shuyou Zhang ◽  
Xue Jiang ◽  
Jianrong Tan

2021 ◽  
Vol 8 (7) ◽  
pp. 78
Author(s):  
Gabriele Egidy Assenza ◽  
Luca Spinardi ◽  
Elisabetta Mariucci ◽  
Anna Balducci ◽  
Luca Ragni ◽  
...  

Transcatheter closure of patent foramen ovale (PFO) and secundum type atrial septal defect (ASD) are common transcatheter procedures. Although they share many technical details, these procedures are targeting two different clinical indications. PFO closure is usually considered to prevent recurrent embolic stroke/systemic arterial embolization, ASD closure is indicated in patients with large left-to-right shunt, right ventricular volume overload, and normal pulmonary vascular resistance. Multimodality imaging plays a key role for patient selection, periprocedural monitoring, and follow-up surveillance. In addition to routine cardiovascular examinations, advanced neuroimaging studies, transcranial-Doppler, and interventional transesophageal echocardiography/intracardiac echocardiography are now increasingly used to deliver safely and effectively such procedures. Long-standing collaboration between interventional cardiologist, neuroradiologist, and cardiac imager is essential and it requires a standardized approach to image acquisition and interpretation. Periprocedural monitoring should be performed by experienced operators with deep understanding of technical details of transcatheter intervention. This review summarizes the specific role of different imaging modalities for PFO and ASD transcatheter closure, describing important pre-procedural and intra-procedural details and providing examples of procedural pitfall and complications.


Aging Brain ◽  
2021 ◽  
Vol 1 ◽  
pp. 100017
Author(s):  
Donna R. Roberts ◽  
Dani C. Inglesby ◽  
Truman R. Brown ◽  
Heather R. Collins ◽  
Mark A. Eckert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document